MAGNETIC DOMAIN WALL MOTION IN NANOSCALE MULTIFERROIC DEVICES UNDER THE COMBINED ACTION OF MAGNETOSTRICTION, RASHBA EFFECT AND DRY-FRICTION DISSIPATION

GIANCARLO CONSOLO and GIOVANNA VALENTI

ABSTRACT. The one-dimensional propagation of magnetic domain walls in a ferromagnetic nanostrip is investigated analytically in the framework of the extended Landau-Lifshitz-Gilbert equation. In particular, this study focuses on the characterization of the domain wall motion in the presence of stresses induced by a piezoelectric actuator, Rashba spin-orbit-torque due to structural inversion asymmetry and dry-friction dissipation accounting for structural disorder into the crystal lattice. By adopting the formalism of travelling waves and using realistic assumptions on the parameters here involved, it has been possible to deduce an explicit analytical expression of the DW velocity in the steady regime. It is also proven that the depinning threshold and the Walker breakdown, representing the boundaries of such a dynamical regime, are both affected by the strength of magnetostriction, Rashba field and dry-friction. Moreover, it is observed that the Rashba effect can also modify the domain wall mobility as well as the direction of propagation. The results here obtained are in qualitative good agreement with recent numerical simulations and experimental observations.

1. Introduction

Manipulation of the domain wall (DW) propagation in ferromagnetic nanostrips is nowadays attracting a lot of interest from both physical and technological viewpoints. Many efforts have been indeed made to exploit DW dynamics in several contexts such as sensors, logic gates, spin-wave filters and memories (Allwood 2005; Parkin et al. 2008; Weiler et al. 2009; Boulle et al. 2011).

The working principle behind any of these devices is typically the interaction among an electric current, a magnetic field and the magnetization state of single or multi-layer structures which gives rise to Spin-Transfer Torque (STT) and Spin-Orbit Torque (SOT) phenomena (Liu et al. 2011; Miron et al. 2011; Wang and Manchon 2012; Manchon et al. 2015; Pylypovskyi et al. 2016; Xu et al. 2016). The STT originates when a spin-polarized current crosses a DW and transfers its angular momentum to the internal structure of the DW, thereby pushing it along the direction of the current flow (Zhang and Li 2004; Thiaville

This paper is dedicated to the memory of Prof. Gaetano Giaquinta (1945–2016)
et al. 2005; Tatara et al. 2007; Koyama et al. 2011). The SOT has been observed in systems lacking of inversion symmetry where the electronic energy bands are split by spin-orbit coupling. In these structures, a charge current passing through a ferromagnet (or a bilayer ferromagnet/heavy metal) generates a non-equilibrium spin density via the inverse spin galvanic effect which is able to exert a torque on the local magnetization of the ferromagnet. The origin of SOT could be due to two phenomena: Rashba and spin-Hall effects. In particular, the exploration of Rashba coupling is nowadays drawing particular attention for the possibility to build up low-energy spintronic devices (Miron et al. 2011; Wang and Manchon 2012; Manchon et al. 2015; Pylypovskyi et al. 2016; Xu et al. 2016).

Besides these current-induced phenomena, it has been demonstrated that the position of a magnetic DW can be also manipulated via the magneto-elastic field. However, since the weak ferromagnetism at room temperature of natural multiferroics limits their applications, a strategy employed to achieve a significant magneto-electric coupling consists of exploiting the inverse magneto-electric effect by depositing or gluing a magnetic system onto a piezoelectric actuator. The heterostructure so obtained realizes a voltage controlled magnetic system where the strains generated by an electric field into the piezoelectric layer are efficiently transferred onto the ferromagnet (Liu et al. 2010; Bryan et al. 2012; Lei et al. 2013; Ranieri et al. 2013; Zighem et al. 2013; Brandl et al. 2014; Hu et al. 2016; Mathurin et al. 2016).

On the other hand, the characterization of realistic magnetic devices needs to account also for the damping effects arising from structural disorder such as inhomogeneities, impurities and crystallographic defects. These anisotropic dissipation mechanisms can be described by means of a rate-independent dry friction contribution (Baltensperger and Helman 1993; Podio-Guidugli and Tomassetti 2002; Tiberkevich and Slavin 2007; Consolo et al. 2012; Consolo and Valenti 2012, 2017).

The purpose of this work is to investigate analytically the DW dynamics obtained when all the above mentioned effects act together on a ferromagnetic nanostrip. As known, the magnetization dynamics occurring in such a system are well described by the Extended Landau-Lifshitz-Gilbert (ELLG) equation which characterizes the precessional motion of the magnetization vector about the direction of the effective field in the presence of concurrent dissipative phenomena: the intrinsic Gilbert damping torque and the current-induced spin-transfer-torque (Landau and Lifschitz 1935; Gilbert 1955; Schryer and Walker 1974; Berger 1984; Puliafito and Consolo 2012; Consolo et al. 2014a; Consolo et al. 2014b). In the present framework, the magneto-elastic effect enters the governing equation as an additive contribution to the effective field, the Rashba effect gives rise to a field-like term and a spin-torque-like term whereas the dry-friction dissipation is added to the Gilbert damping torque.

Owing to the complexity of the resulting ELLG equation, the solution is generally found via numerical simulations (Shu et al. 2004; Bañas 2008; Lei et al. 2013; Liang et al. 2014; Mballa-Mballa et al. 2014; Hu et al. 2016; Mathurin et al. 2016). Nevertheless, in this work, we aim to describe analytically the one-dimensional DW motion under the following assumptions: the magnetostrictive layer is isotropic; the piezoelectric-induced strains are spatially uniform and fully transferred into the ferromagnetic layer; the dry-friction coefficient depends linearly on the piezoelectric-induced strains and the Rashba SOT does not substantially modify the classical Walker solution. Let us emphasize that, in
spite of these simplifying assumptions, the resulting DW dynamics are still quite rich and in qualitative agreement with experimental observations.

The manuscript is organized as follows.

In Section 2 we build up a 1D model based upon the ELLG equation for the description of the DW motion in ferromagnetic nanostraps under the simultaneous influence of magnetic fields, spin-polarized currents, Rashba and magneto-elastic effects. In such a model, dissipation is accounted for by a standard linear Gilbert damping and a nonlinear dry-friction term. Then, the explicit analytical expression of the main characteristic parameters involved into the steady dynamical regime are derived by adopting a travelling wave ansatz.

In Section 3, we use realistic values for the parameters in order to evaluate numerically the analytical results deduced in Section 2. In particular, we aim to elucidate the functional dependence of the characteristic parameters on the piezo-induced strains and the Rashba field as well as to quantify the role played by these contributions into the steady DW dynamics.

In Section 4, we address some concluding remarks.

2. The mathematical 1D model

Let us consider a nanoscale multiferroic device composed by a thin magnetostrictive ferromagnet (FM) placed on the top surface of a thick piezoelectric (PE) actuator, as sketched in Fig. 1.

The FM layer is designed as a nanostrap of length L, width w and thickness d along e_x, e_y, e_z axes, respectively, with $L \gg w > d$. This layer is subject to an external bias.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Schematics of the multiferroic device consisting of a thin magnetostrictive ferromagnetic nanostrap placed on the top of a thick piezoelectric layer.}
\end{figure}
magnetic field $\mathbf{h}^{\text{ext}} = (h_x, h_y, h_z)$ and is traversed by an electric current density J flowing along the major axis \mathbf{e}_x. These driving sources are assumed to be constant in time and uniform in space. Two magnetic domains are nucleated at the edges of the FM layer and the resulting DW, which at equilibrium is located at the center of the structure, can be shifted along the nanostrip axis \mathbf{e}_x via the external magnetic field and/or the electric current.

The PE layer serves as an actuator that deforms upon the application of an electric voltage imposed between two lateral electrodes. This voltage generates an electric field directed along the axis \mathbf{e}_y which induces, in turn, an elongation or a compression of the PE width w_{PE} depending on the sign of the applied voltage. Owing to the elastic properties of the PE layer, the elongation (compression) along the \mathbf{e}_y axis is accompanied by a compression (elongation) in the two orthogonal directions. However, since the PE thickness along the axis \mathbf{e}_z is quite large, the corresponding strain component is usually neglected. For simplicity, all the shear strains are also disregarded. According to these assumptions, the only non-null planar strain components are $\varepsilon^{(\text{PE})}_{xx}$ and $\varepsilon^{(\text{PE})}_{yy}$ that are related to each other via the Poisson ratio ν (Weiler et al. 2009; Zighem et al. 2013).

The one-dimensional DW motion occurring at mesoscale in the FM layer can be described through the ELLG equation (Landau and Lifschitz 1935; Gilbert 1955; Schryer and Walker 1974; Berger 1984; Puliafito and Consolo 2012; Consolo et al. 2014a; Consolo et al. 2014b):

$$\dot{\mathbf{m}} = \mathbf{t}^{\text{pre}} + \mathbf{t}^{\text{eff}} + \mathbf{t}^{\text{ra}} + \mathbf{t}^{\text{d}}$$ \hspace{1cm} (1)

where $\mathbf{m}(x,t) = \mathbf{M}(x,t)/M_S$ represents the normalized magnetization vector with M_S the saturation magnetization and the over-dot denotes the partial time derivative.

In detail, the first term \mathbf{t}^{pre} on the right-hand side of (1) defines the undamped precessional torque induced by the effective magnetic field \mathbf{h}^{eff} which, in turn, accounts for the contributions arising from external \mathbf{h}^{ext}, exchange \mathbf{h}^{exc}, demagnetizing \mathbf{h}^{dmg} and magnetoelastic \mathbf{h}^{mel} fields (Zhu et al. 2001; Zhang and Chen 2005):

$$\mathbf{t}^{\text{pre}} = \gamma \mathbf{h}^{\text{eff}} \wedge \mathbf{m}$$ \hspace{1cm} (2a)

$$\mathbf{h}^{\text{eff}} = \mathbf{h}^{\text{ext}} + \mathbf{h}^{\text{exc}} + \mathbf{h}^{\text{dmg}} + \mathbf{h}^{\text{mel}}$$ \hspace{1cm} (2b)

where $\gamma = M_S \mu_0 \gamma_e$ is a constant expressed in terms of the magnetic permeability of the vacuum μ_0 and of the gyromagnetic ratio $\gamma_e = ge/e$, being g the Landé factor, e the electron charge and m_e the electron mass.

The exchange field \mathbf{h}^{exc} can be written as:

$$\mathbf{h}^{\text{exc}} = A \frac{\partial^2 \mathbf{m}}{\partial x^2}$$ \hspace{1cm} (3)

being $A = \frac{2A_{\text{ex}}}{\mu_0 M_S^2}$ related to the exchange constant of the material A_{ex} through $A = \frac{2A_{\text{ex}}}{\mu_0 M_S^2}$.

The demagnetizing field \mathbf{h}^{dmg} can be safely approximated by:

$$\mathbf{h}^{\text{dmg}} = -N_x (\mathbf{m} \cdot \mathbf{e}_x) \mathbf{e}_x - N_y (\mathbf{m} \cdot \mathbf{e}_y) \mathbf{e}_y - N_z (\mathbf{m} \cdot \mathbf{e}_z) \mathbf{e}_z$$ \hspace{1cm} (4)

where the demagnetizing factors N_x, N_y, N_z are constrained by the normalization condition $N_x + N_y + N_z = 1$.

Moreover, if we consider the Hooke law as the linear constitutive assumption relating stress and strain in the FM, the magnetoelastic field \mathbf{h}^{mel} reads:
\[h^{net} = \frac{1}{\mu_0 M_S^2} C \varepsilon \varepsilon^\mu \frac{\partial \varepsilon^\mu}{\partial \mathbf{m}} \]

(5)

where, in the case of an isotropic material, the elastic stiffness tensor \(C \) can be expressed as:

\[
C = \begin{bmatrix}
c_{11} & c_{12} & c_{12} \\
c_{12} & c_{11} & c_{12} \\
c_{12} & c_{12} & c_{11}
\end{bmatrix}
\]

(6)

being \(c_{11} \) and \(c_{12} \) the two independent elastic constants in the Voigt notation.

In (5), \(\varepsilon \) and \(\varepsilon^\mu \) denote the total strain tensor and the stress-free magnetostriction strain tensor, respectively, which are assumed to be spatially homogeneous. The magnetostriction strain tensor \(\varepsilon^\mu \) is given by:

\[\varepsilon^\mu = \frac{3}{2} \lambda S \left(\mathbf{m} \otimes \mathbf{m} - \frac{1}{3} \mathbf{I} \right), \]

(7)

\(\lambda \) being the saturation magnetostriction constant, \(\mathbf{I} \) the identity tensor and the symbol \(\otimes \) representative of the tensor product. About the total strain tensor \(\varepsilon \), it can be hypothesized that, since the FM layer is affixed to the top \(xy \) face of the PE actuator, the planar strains \(\varepsilon^{(PE)}_{xx} \) and \(\varepsilon^{(PE)}_{yy} \) are fully transferred from the PE to the FM, namely \(\varepsilon_{xx} = \varepsilon^{(PE)}_{xx} \) and \(\varepsilon_{yy} = \varepsilon^{(PE)}_{yy} \). Moreover, owing to the small thickness of the FM layer, its free upper surface and the negligible shear strain in the plane \(xy \), it is also reasonable to assume that the FM layer is in a plane bitension stress state characterized by (Lei et al. 2013; Hu et al. 2016; Mathurin et al. 2016):

\[\varepsilon_{xy} = \varepsilon_{xz} = \varepsilon_{yz} = 0, \]

(8a)

\[\varepsilon_{zz} = -\frac{c_{12}}{2 c_{11}} (\varepsilon_{xx} + \varepsilon_{yy}) = -\frac{c_{12}}{2 c_{11}} (1 - v) \varepsilon_{yy}. \]

(8b)

The second torque term \(t^{stt} \) appearing in (1) accounts for the spin-transfer torque generated by the current flow and includes the adiabatic and non-adiabatic contributions responsible for the DW distortion and motion, respectively (Zhang and Li 2004; Thiaville et al. 2005). It reads:

\[t^{stt} = u_0 \left[-\frac{\partial \mathbf{m}}{\partial x} - \eta \frac{\partial \mathbf{m}}{\partial x} \wedge \mathbf{m} \right] J \]

(9)

with \(\eta \) the phenomenological non-adiabatic parameter and \(u_0 = g \mu_B P / (2eM_s) \), being \(\mu_B \) the Bohr magneton and \(P \) the polarization factor of the current.

The third term \(t^{ra} \) in (1) describes the current-induced Rashba effect that enters the governing equation both as a field-like term and as a spin-transfer-torque-like term. In fact, it is given by:

\[t^{ra} = \gamma \tilde{\alpha}_{ra} [\mathbf{e}_y \wedge \mathbf{m} + \eta \mathbf{m} \wedge (\mathbf{m} \wedge \mathbf{e}_y)] J \]

(10)

being \(\tilde{\alpha}_{ra} = \frac{\alpha_R P}{\mu_0 \mu_B M_S} \) with \(\alpha_R \) the parameter that measures the strength of the Rashba spin-orbit-torque.
Finally, the torque term t^d in (1), accounting for the intrinsic dissipative phenomena, includes the classical Gilbert damping torque (Gilbert 1955) augmented by a non linear contribution arising from a rate-independent dry friction (Baltensperger and Helman 1993; Podio-Guidugli and Tomassetti 2002; Tiberkevich and Slavin 2007; Consolo et al. 2012; Consolo and Valenti 2012, 2017), namely:

$$t^d = \alpha_G (\mathbf{m} \wedge \dot{\mathbf{m}}) + \mathbf{m} \wedge \left(\gamma \alpha_D |\dot{\mathbf{m}}|^2 \right)^{-1/2} \dot{\mathbf{m}} \tag{11}$$

The phenomenological dimensionless parameters α_G and α_D describe the strength of linear and nonlinear dissipation, respectively. As known from literature, the dry-friction term can mimic the pinning effects due to the presence of crystallographic defects or inhomogeneities into the FM layer. Moreover, this term can also account, at least in principle, for the magnification of such pinning effects caused by the piezo-induced stress. Therefore, it is reasonable to assume that the dry-friction coefficient depends upon the piezo-strain, $\alpha_D = \alpha_D (\varepsilon_{yy})$, as conjectured in our previous work (Consolo and Valenti 2017).

To analytically gain insight into DW dynamics, we substitute the explicit expressions of the above defined torques into the ELLG equation (1) which, in polar coordinates, becomes:

$$\sin \theta \dot{\phi} - \left[\alpha_G + \gamma \alpha_D \left(\frac{\dot{\theta}}{\sin^2 \theta} + \sin^2 \theta \dot{\phi}^2 \right)^{-1/2} \right] \dot{\theta}$$

$$= \gamma \left\{ -A \frac{\partial^2 \theta}{\partial x^2} + A \sin \theta \cos \theta \left(\frac{\partial \phi}{\partial x} \right)^2 - h_x \cos \theta \cos \varphi - h_y \cos \theta \sin \varphi + h_z \sin \theta \right\} + \left[N_x \cos^2 \varphi + N_y \sin^2 \varphi - N_z \right.$$

$$- \frac{3 \lambda_s}{\mu_0 M_s^2} \frac{c_{11} - c_{12}}{c_{11}} \left[c_{11} (\varepsilon_{xx} \cos^2 \varphi + \varepsilon_{yy} \sin^2 \varphi) + c_{12} (\varepsilon_{xx} + \varepsilon_{yy}) \right] \sin \theta \cos \theta$$

$$- \eta \dot{\phi} \sin \varphi - \eta \dot{\phi} \cos \varphi - \eta \dot{\phi} \cos \varphi \right\} - u_0 \sin \theta \frac{\partial \phi}{\partial x} + \eta u_0 \frac{\partial \theta}{\partial x}, \tag{12a}$$

$$= \gamma \left\{ A \sin \theta \frac{\partial^2 \phi}{\partial x^2} + 2 \cos \theta \frac{\partial \theta}{\partial x} \frac{\partial \phi}{\partial x} + h_y \cos \varphi - h_x \sin \varphi \right\}$$

$$+ \left[N_x - N_y + \frac{3 \lambda_s}{\mu_0 M_s^2} \frac{c_{11} - c_{12}}{c_{11}} (\varepsilon_{yy} - \varepsilon_{xx}) \right] \sin \theta \cos \varphi \sin \varphi - \eta \dot{\phi} \cos \varphi$$

$$- \dot{\phi} \cos \varphi \right\} - u_0 \sin \theta \frac{\partial \phi}{\partial x} - u_0 \frac{\partial \theta}{\partial x}, \tag{12b}$$

where θ and φ are the polar and azimuthal angles, respectively, so that the unit magnetization vector \mathbf{m} can be expressed as $\mathbf{m} = (\cos \varphi \sin \theta, \sin \varphi \sin \theta, \cos \theta)$. In order to describe the dynamical regime characterized by a steady motion of the DW along the nanostrip axis e_x with constant velocity v, let us introduce the travelling wave...
ansatz for the polar angle $\theta = \theta(x - vt)$ whereas the azimuthal angle is assumed to be constant in time and uniform in space $\varphi = \varphi_0$ (Schryer and Walker 1974).

Under these assumptions, the system (12) reduces to:

$$\begin{align*}
\alpha_G v - \eta u_0 J & \quad \theta' + \alpha_D = \gamma \left\{ -A \theta'' - h_x \cos \theta \cos \varphi_0 - h_y \cos \theta \sin \varphi_0 + h_z \sin \theta \right. \\
& \quad - \alpha_{ra} J \cos \varphi_0 - \eta \alpha_{ra} J \cos \varphi_0 + \sin \theta \cos \varphi_0 \left[N_x \cos^2 \varphi_0 + N_y \sin^2 \varphi_0 - N_z \right] \\
& \quad - \frac{3 \lambda_s}{\mu_0 M_s^2} \left(c_{11} - c_{12} \right) \left[c_{11} \left(\epsilon_{xx} \cos^2 \varphi_0 + \epsilon_{yy} \sin^2 \varphi_0 \right) + c_{12} \left(\epsilon_{xx} + \epsilon_{yy} \right) \right] \right\} , \quad (13a)
\end{align*}$$

$$\begin{align*}
(u_0 J - v) \theta' & = \gamma \left\{ h_y \cos \varphi_0 - h_x \sin \varphi_0 + \alpha_{ra} J \cos \varphi_0 - \eta \alpha_{ra} J \cos \theta \sin \varphi_0 \\
& + \left[\left(N_x - N_y \right) + \frac{3 \lambda_s}{\mu_0 M_s^2} \left(c_{11} - c_{12} \right) \left(\epsilon_{yy} - \epsilon_{xx} \right) \right] \sin \theta \cos \varphi_0 \sin \varphi_0 \right\} , \quad (13b)
\end{align*}$$

where the prime denotes the derivative with respect to the travelling wave variable $\xi = x - vt$ and $\alpha_D = \gamma \alpha_G \text{sign}(v \theta')$.

It is straightforward to see that eq. (13b) can be recast as:

$$\theta' = \Gamma \left(\sin \theta + \tilde{\Gamma} \cos \theta + \tilde{\Gamma} \right)$$

(14)

with:

$$\begin{align*}
\Gamma & = \frac{\gamma}{u_0 J - v} \left[N_x - N_y \right] + \frac{3 \lambda_s}{2 \mu_0 M_s^2} \left(c_{11} - c_{12} \right) \left(\epsilon_{yy} - \epsilon_{xx} \right) \sin 2 \varphi_0 , \quad (15a) \\
\tilde{\Gamma} & = - \frac{\eta \alpha_{ra}}{\left[N_x - N_y \right] + \frac{3 \lambda_s}{\mu_0 M_s^2} \left(c_{11} - c_{12} \right) \left(\epsilon_{yy} - \epsilon_{xx} \right) \cos \varphi_0} J = - \tilde{\Gamma}_1 J , \quad (15b) \\
\hat{\Gamma} & = \frac{h_x \cos \varphi_0 - h_y \sin \varphi_0 + \alpha_{ra} \cos \varphi_0 J}{\left[N_x - N_y \right] + \frac{3 \lambda_s}{\mu_0 M_s^2} \left(c_{11} - c_{12} \right) \left(\epsilon_{yy} - \epsilon_{xx} \right) \sin \varphi_0 \cos \varphi_0} = \hat{\Gamma}_0 + \hat{\Gamma}_1 J , \quad (15c)
\end{align*}$$

where Γ^{-1} has the dimension of length while $\tilde{\Gamma}$ and $\hat{\Gamma}$ are dimensionless parameters.

Then, inserting (14) into (13a), after some algebra, leads to:

$$P \sin \theta + Q \cos \theta + R \sin \theta \cos \theta + S \sin^2 \theta + T = 0$$

(16)

where:

$$\begin{align*}
P & = \Gamma \left(\alpha_G v - \eta u_0 J \right) - \gamma \left(h_z + \Lambda \tilde{\Gamma} \right) , \quad (17a) \\
Q & = \Gamma \left(\alpha_G v - \eta u_0 J \right) + \gamma \left(h_x \cos \varphi_0 + h_y \sin \varphi_0 \right) + \Lambda \tilde{\Gamma} + \tilde{\Gamma}_1 J \sin \varphi_0 , \quad (17b) \\
R & = \gamma \left\{ \Lambda \tilde{\Gamma}^2 \left(1 - \tilde{\Gamma}^2 \right) + N_z - N_y \sin^2 \varphi_0 - N_x \cos^2 \varphi_0 \\
& + \frac{3 \lambda_s}{\mu_0 M_s^2} \left(c_{11} - c_{12} \right) \left[c_{11} \left(\epsilon_{xx} \cos^2 \varphi_0 + \epsilon_{yy} \sin^2 \varphi_0 \right) + c_{12} \left(\epsilon_{xx} + \epsilon_{yy} \right) \right] \right\} , \quad (17c)
\end{align*}$$
\begin{equation}
S = -2\gamma A\Gamma^2\tilde{\Gamma},
\end{equation}

\begin{equation}
T = \Gamma\tilde{\Gamma}\left(\alpha_G\nu - \eta u_0 J + \tilde{\alpha}_D + \gamma\left(A\Gamma^2\tilde{\Gamma} + \eta\tilde{\alpha}_{\nu J}\cos \varphi_0\right)\right).
\end{equation}

Furthermore, taking into account some previous results (Consolo et al. 2012; Consolo and Valenti 2012, 2017), the expression of the DW width $\delta = \Gamma^{-1}$ can be deduced from (17c) by imposing $R = 0$. Thus, we have:

$$\delta^{-2} = \Gamma^2 = \frac{1}{A\left(1 - \Gamma^2\right)} \left\{ N_x \cos^2 \varphi_0 + N_y \sin^2 \varphi_0 - N_z \right\}$$

$$- \frac{3\lambda_S}{\mu_0 M_s^2} \frac{(c_{11} - c_{12})}{c_{11}} \left[c_{11} \left(\varepsilon_{xx} \cos^2 \varphi_0 + \varepsilon_{yy} \sin^2 \varphi_0\right) + c_{12} \left(\varepsilon_{xx} + \varepsilon_{yy}\right)\right].$$

Comparing (18) with the expression found in (Consolo and Valenti 2017), we notice that the presence of the Rashba field reduces, via the coefficient Γ, the DW width.

As it can be proven, a meaningful solution of eq. (14) satisfying the symmetry condition $\theta(0) = \pi/2$ is admitted for $|\tilde{\Gamma}^2 - \tilde{\Gamma}^2| < 1$ only and it can be expressed as (Podio-Guidugli and Tomassetti 2002; Consolo and Valenti 2012, 2017):

$$\theta(\xi) = 2 \arctan \frac{Fk_2 \exp \left(\Gamma\sqrt{1 + \Gamma^2 - \Gamma^2\xi}\right) - k_1}{F \exp \left(\Gamma\sqrt{1 + \Gamma^2 - \Gamma^2\xi}\right) - 1}$$

with:

$$F = \frac{1 + \left(\tilde{\Gamma} - \tilde{\Gamma}\right)\left(1 - \tilde{\Gamma}\right) - \left(\tilde{\Gamma} - \tilde{\Gamma} + 1\right)\sqrt{1 + \Gamma^2 - \Gamma^2\xi}}{\left(\tilde{\Gamma} - \tilde{\Gamma}\right)\left(\tilde{\Gamma} + 1\right)},$$

$$k_1 = \frac{-1 + \sqrt{1 + \Gamma^2 - \Gamma^2\xi}}{\tilde{\Gamma} - \tilde{\Gamma}},$$

$$k_2 = \frac{-1 - \sqrt{1 + \Gamma^2 - \Gamma^2\xi}}{\tilde{\Gamma} - \tilde{\Gamma}}.$$
the range $0 \leq \theta \leq \pi$, the following expression of the DW velocity in the steady regime is obtained:

$$v = \frac{1}{\alpha_G \Gamma (2 + \pi \Gamma_0 + \pi \Gamma_1 J)} \left\{ 2 h_z + \left[u_0 \eta \left(2 + \pi \Gamma_0 \right) - \eta \gamma \pi \alpha_{ra} \cos \varphi_0 - 2 \gamma A \Gamma^2 \Gamma_0 \Gamma_1 J \right] \right\}$$

$$+ \left\{ \eta \pi u_0 - 2 \gamma A \Gamma_1 \right\} J^2 - \pi \alpha_D \right\}.$$ \hspace{1cm} (21)

In order to investigate how each driving source affects the DW velocity, let us now characterize the dynamics obtained when the magnetic field h^{ext} and the electric current J act separately.

In the absence of electric current, the DW velocity exhibits the expected linear dependence on the z-component of the magnetic field responsible for the DW motion, being the Rashba effect null (Consolo and Valenti 2017).

On the contrary, in the absence of external magnetic field, the presence of the Rashba field makes the coefficient $\Gamma_1 \neq 0$ so that the dependence of velocity on electric current becomes nonlinear. Moreover, taking into account (15b)-(15c), the Rashba field also affects the modulus and the sign of the DW mobility. In particular, at the critical value $\alpha_{ra} = \alpha_{ra}^*$ given by:

$$\alpha_{ra}^* = \frac{\pi u_0 \left[N_x - N_y + \frac{3 \lambda_s}{\mu_0 M_t} \left(c_{11} - c_{12} \right) \left(\varepsilon_{yy} - \varepsilon_{xx} \right) \right] \cos \varphi_0}{2 \gamma A \Gamma},$$ \hspace{1cm} (22)

the DW reverses its direction of motion so that a forward (backward) propagating DW is observed for $\alpha_{ra} < \alpha_{ra}^*$ ($\alpha_{ra} > \alpha_{ra}^*$). Let us also point out that the reversal of the propagation direction also affects the parameter α_D, while the travelling profile $\theta(\xi)$ is unchanged.

As known, the steady dynamical regime can only take place in a well defined range of the external sources. The lower bound of such a range, named depinning threshold, corresponds to the minimum value of the magnetic field/electric current necessary to overcome the static friction. From eq. (21), it can be expressed as:

$$J = 0 \implies h^{(DEP)}_z = \frac{\pi}{2 \gamma} \alpha_D,$$ \hspace{1cm} (23a)

$$h^{ext} = 0 \implies \text{for } \alpha_{ra} \leq \alpha_{ra}^*,$$

$$J^{(DEP)} = \frac{1}{2 \Gamma_1 \Gamma \left(\eta \pi u_0 - 2 \gamma A \Gamma_1 \right)} \left\{ \eta \left(\gamma \pi \alpha_{ra} \cos \varphi_0 - 2 u_0 \Gamma \right) \right\}$$

$$\pm \sqrt{\eta^2 \left(\gamma \pi \alpha_{ra} \cos \varphi_0 - 2 u_0 \Gamma \right)^2 + 4 \pi \alpha_D \Gamma_1 \Gamma \left(\eta \pi u_0 - 2 \gamma A \Gamma_1 \right)}.$$ \hspace{1cm} (23b)

As it can be observed, in the case of magnetic-field-driven motion, the nonlinear dry dissipation provides the only contribution to the depinning threshold. On the contrary, for a current-driven motion, such a threshold is also affected by Rashba field and piezo-induced strains, irrespective of the existence of a functional dependence between strain and dry-friction.
The upper bound of the steady motion range, named Walker Breakdown (WB), is deduced from (15a) and leads to the following restrictions to the DW velocity:

\[J = 0 \implies v \leq \tilde{v} \] \hspace{1cm} (24a)

\[h^\text{ext} = 0 \implies \begin{cases} v \leq u_0 J + \tilde{v} & \text{for } \hat{\alpha}_{ra} < \hat{\alpha}_{ra}^* \\ v \geq u_0 J - \tilde{v} & \text{for } \hat{\alpha}_{ra} > \hat{\alpha}_{ra}^* \end{cases} \] \hspace{1cm} (24b)

\[\tilde{v} = \frac{\gamma}{2\Gamma} \left| N_x - N_y + \frac{3\lambda_S}{\mu_0 M_s^2} (c_{11} - c_{12}) (\varepsilon_{yy} - \varepsilon_{xx}) \right| \] \hspace{1cm} (24c)

Therefore, by comparing (21) with (24a) and (24b), we deduce the WB values for external field and current density:

\[h(\text{WB}) = \pi \gamma D + \frac{\alpha_G \Gamma \left(2 + \pi \hat{\Gamma} \right) \tilde{v}}{2 \gamma}, \] \hspace{1cm} (25a)

\[\text{for } \hat{\alpha}_{ra} < \hat{\alpha}_{ra}^* \implies J^{\text{(WB)}}_{\text{upper}} = \frac{1}{2\hat{\Gamma}_1 \Gamma} \left\{ \left(2u_0 \Gamma (\alpha_G - \eta) + \eta \gamma \pi \hat{\alpha}_{ra} \cos \varphi_0 + \pi \alpha_G \hat{\Gamma}_1 \Gamma \tilde{v} \right) \right. \] \hspace{1cm} (25b)

\[\left. + \left[\left(2u_0 \Gamma (\alpha_G - \eta) + \eta \gamma \pi \hat{\alpha}_{ra} \cos \varphi_0 + \pi \alpha_G \hat{\Gamma}_1 \Gamma \tilde{v} \right)^2 \right] \right\}^{1/2} \] \hspace{1cm}

\[\text{for } \hat{\alpha}_{ra} > \hat{\alpha}_{ra}^* \implies J^{\text{(WB)}}_{\text{lower}} = \frac{1}{2\hat{\Gamma}_1 \Gamma} \left\{ \left(2u_0 \Gamma (\alpha_G - \eta) + \eta \gamma \pi \hat{\alpha}_{ra} \cos \varphi_0 - \pi \alpha_G \hat{\Gamma}_1 \Gamma \tilde{v} \right) \right. \] \hspace{1cm} (25c)

\[\left. - \left[\left(2u_0 \Gamma (\alpha_G - \eta) + \eta \gamma \pi \hat{\alpha}_{ra} \cos \varphi_0 - \pi \alpha_G \hat{\Gamma}_1 \Gamma \tilde{v} \right)^2 \right] \right\}^{1/2} \] \hspace{1cm}

Summarizing, a steady motion can only originate if the strength of the external source is greater than the propagation threshold (23) but smaller than the WB limit (25a), (25b). In particular, the maximum value of the electric current which allows a steady motion is given by \(J^{(WB)}_{\text{upper}} \) or \(J^{(WB)}_{\text{lower}} \), depending on the direction of propagation.

Let us finally notice that, since depinning threshold and WB conditions are both affected by Rashba, magnetoelastic and dry-friction, the whole steady dynamical regime can be modulated via current-induced spin-orbit-torque effects and/or via applied stresses, in accordance with experimental observations (Miron et al. 2011; Ranieri et al. 2013).
3. Numerical results

In order to estimate quantitatively the physical quantities introduced in the previous Section, we now present a numerical illustrative example by using realistic parameters extracted from literature.

About the PE layer, we consider that the in-plane strain difference $|\varepsilon_{yy} - \varepsilon_{xx}|$ lies in the range $[0, 10^{-3}]$ whereas the Poisson ratio is equal to $\nu = 0.39$ (Lei et al. 2013; Zighem et al. 2013; Mathurin et al. 2016).

About the FM material, we consider a metallic ferromagnetic nanostrip having length $L = 20 \mu m$, width $w = 160 nm$ and thickness $d = 1 nm$ so that the constraint $L >> w > d$ is satisfied. The set of parameters includes: saturation magnetization $M_S = 1 \times 10^6 A/m$, exchange constant $A_{ex} = 1 \times 10^{-11} J/m$, dimensionless Gilbert damping constant $\alpha_G = 0.1$, demagnetizing factors $N_x = 0.8011$, $N_y = 0.0011$ and $N_z = 0.1978$, current polarization factor $P = 0.5$, non-adiabatic coefficient $\eta = 0.4$, elastic constants $c_{11} = 237 GPa$ and $c_{12} = 117 GPa$, saturation magnetostriction $\lambda_S = 20$ ppm (Chen et al. 2002; Yamanouchi et al. 2011; Lei et al. 2013), $\varphi_0 = 10^3$ and the Rashba parameter α_r lies in the range $[0, 2.0] \times 10^{-30}$ Jm. According to this set of parameters, the DW width is $\delta = \Gamma^{-1} \approx 5nm$.

Moreover, since the aim of this work is to emphasize the role of the current-induced STT and SOT effects, the external magnetic field h^{ext} is neglected. On the other hand, DW dynamics driven by the sole magnetic field have been already investigated in a previous work (Consolo and Valenti 2017).

Let us firstly analyze the piezo-strain dependence of the dimensionless parameters $\hat{\Gamma}$ and $\hat{\Gamma}^\prime$, defined in (15b)-(15c), which are strictly related to Rashba and magnetoelastic effects. As shown in Fig. 2, these quantities exhibit a weak dependence on the in-plane strain difference $\varepsilon_{yy} - \varepsilon_{xx}$ and their values satisfy the required constraints $|\hat{\Gamma}^2 - \hat{\Gamma}^2| < 1$ and $|\hat{\Gamma}^\prime|, |\hat{\Gamma}| \approx 0$.

We now investigate the traveling wave profile (19) obtained by using the values of $\hat{\Gamma}$ and $\hat{\Gamma}^\prime$ reported in Fig. 2. As shown in Fig. 3, being $\theta (-\infty) \approx 0$ and $\theta (+\infty) \approx \pi$, the solution approximates quite well the Walker profile, so that we can safely treat it as a classical 180° Bloch DW.

To quantify the extreme of the interval in which the steady dynamical regime takes place, in agreement with our previous conjecture (Consolo and Valenti 2017), we assume a linear dependence of the dry-friction coefficient on the in-plane strain difference, namely:

$$\hat{\alpha}_D = \gamma \left[\hat{\alpha}_0 + \hat{\alpha}_1 \left(\varepsilon_{yy} - \varepsilon_{xx} \right) \right] \text{sign} (\nu \theta')$$

where $\hat{\alpha}_0$ and $\hat{\alpha}_1$ are arbitrary constants. In particular, the first term measures the structural disorder resulting from the fabrication process of the FM material whereas the second one mimics the amplification of such disorder due to piezo-strains.

In order to evaluate the lower bound of the steady regime, in Fig. 4 we represent the depinning current density J^{DEP} as a function of the piezo-strain for several values of the Rashba parameter satisfying $\hat{\alpha}_r < \hat{\alpha}_r^\prime$. From this figure we notice that the depinning current is shifted upwards with the increase of both Rashba field and piezo-strains. These fields thus contribute in amplifying the pinning effects that prevent the DW from moving (Tatara et al. 2006).
Figure 2. In-plane strain difference dependence of the parameters $\tilde{\Gamma}$ (solid line) and $\hat{\Gamma}$ (dashed line). The parameters used are: $\alpha_R = 0.3 \times 10^{-30} \text{jm}$ and $J = 1 \text{A/\mu m}^2$.

Figure 3. Traveling wave profile obtained by using the values of $\tilde{\Gamma}$ and $\hat{\Gamma}$ reported in Fig. 2.

The upper limit to the forward steady motion, given by the Walker Breakdown condition $J_{(WB)}^{\text{upper}}$, is represented in Fig. 5. Results indicate that the Rashba field and the piezo-strains extend the steady regime towards larger values of the input current, allowing in turn the
Figure 4. In-plane strain difference $\varepsilon_{yy} - \varepsilon_{xx}$ dependence of depinning current density J^{DEP} for different values of the Rashba parameter α_R. The parameters here involved are: $J = 1 \, \text{A/}\mu\text{m}^2$, $\gamma \bar{\alpha}_0 = 2.5 \times 10^{8} \, \text{s}^{-1}$ and $\gamma \bar{\alpha}_1 = 5 \times 10^{10} \, \text{s}^{-1}$.

The DW velocity to achieve larger values. However, the shift of the WB condition appears to be much more dependent upon the strength of the Rashba field rather than the magnetoelastic one. For instance, if $\alpha_R = 0.3 \times 10^{-30} \, \text{Jm}$, the WB limit is about 3 times larger than the one obtained in the absence of Rashba contribution whereas it varies by less than 1% in the whole range of piezo-strains.

We now inspect the dependence of the steady DW velocity obtained by fixing the piezo-strains and varying the Rashba contribution (see Fig.6a) and vice versa (see Fig.6b). In detail, from a direct inspection of Fig.6a we notice that the Rashba field affects the depinning threshold, the DW mobility and the direction of motion. In fact, in the regime of forward propagation ($v \geq 0$) and for a fixed value of electric current, the increase of the Rashba field leads to a reduction of the DW mobility. On the other hand, a greater Rashba field allows to achieve larger values of the steady DW velocity, being the corresponding upper WB limit shifted upward.

If the Rashba parameter overcomes the critical value $\bar{\alpha}^*_\text{ra}$ (corresponding to $\alpha_R = 1.25 \times 10^{-30} \, \text{Jm}$), the DW mobility changes sign and the direction of propagation is consequently reversed. In this case, the upper bound of the steady regime is given by $J^{(\text{WB})}_{\text{lower}}$. As a consequence of that, the increase of the Rashba parameter leads now to an increase of the DW mobility and larger DW velocities (in absolute value) can be achieved by applying smaller current values.

Finally, the investigation carried out by fixing the Rashba parameter and varying the in-plane piezo-strains (see Fig.6b) allows to conclude that the piezo-strains don’t play any significant role in determining the DW mobility but they shift the DW motion towards
FIGURE 5. In-plane strain difference $\varepsilon_{yy} - \varepsilon_{xx}$ dependence of the upper Walker breakdown current density $J_{\text{upper}}^{(WB)}$ for different values of the Rashba parameter α_R. The parameters are the same as the ones used in Fig. 4.

larger values of the input stimulus, as expected from the working principle behind a friction mechanism.

It is worthy noticing that our results are in qualitative good agreement with both numerical (Martinez and Finocchio 2013) and laboratory observations (Miron et al. 2011; Ranieri et al. 2013).

Remark 2. The analytical results presented in the previous Section describe the steady DW dynamics observed in metal or semiconductor ferromagnets. The numerical results shown in this Section depict the behavior of a metallic ferromagnet but can be used, at qualitative level, for a semiconductor as well. The most remarkable difference between them is that, since a semiconductor has typically a much smaller saturation magnetization value, it exhibits a significantly larger sensitivity of the characteristic parameters on the applied stresses. A quantitative comparison on the piezo-induced strain dependence of depinning threshold and Walker breakdown field/current for these materials can be found in Consolo and Valenti (2017).

4. Conclusions

In this work, the one-dimensional motion of magnetic DW driven by the simultaneous action of external magnetic field, spin-polarized current, Rashba effect and magnetostriction has been theoretically described in a bilayer piezoelectric/magnetostrictive nanostructure exhibiting crystallographic defects.

This study has been carried out by assuming that the FM material is isotropic; the biaxial in-plane strains are spatially uniform and fully transferred from the PE actuator to the
Figure 6. Steady DW velocity as a function of current density obtained by (a) fixing the piezo-strains and varying the Rashba parameter or (b) fixing the Rashba parameter and varying the piezo-strains.

FM layer and there exists a linear dependence between piezo-induced strains and the dry-friction coefficient. Moreover, in order to recover a Walker-like solution, the dimensionless coefficients $\hat{\Gamma}$ and $\tilde{\Gamma}$, directly related to the Rashba field, have been constrained to satisfy the conditions: $|\hat{\Gamma}|^2 - |\tilde{\Gamma}|^2 < 1$ and $|\hat{\Gamma}|, |\tilde{\Gamma}| \approx 0$.

Under such assumptions, an explicit expression for the steady DW velocity has been deduced. To the best of our knowledge, such an investigation has been so far undertaken via numerical tools only.
Our results have pointed out that the linearity between the DW velocity and the driving sources is preserved by dry friction and magnetoelastic contributions whereas a nonlinear behavior is induced by the Rashba effect. Moreover, it has been observed that the Rashba field acts as an additional degree of freedom which can be used to modify the DW mobility as well as the propagation direction. On the other hand, both Rashba and magnetoelastic fields have been found to affect the depinning threshold and the WB condition which delimit the steady regime.

Our results are also in qualitative agreement with numerical and experimental observations.

Acknowledgments

This work was partially supported by INdAM-GNFM.

References

MAGNETIC DOMAIN WALL MOTION IN NANOSCALE MULTIFERROIC DEVICES

Università degli Studi di Messina,
Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra,
V.le F. Stagno D’Alcontres 31, 98166 Vill. S.Agata, Messina, Italy

Università degli Studi di Messina,
Dipartimento di Ingegneria,
C.da di Dio, 98166 Vill. S.Agata, Messina, Italy

∗To whom correspondence should be addressed | email: gvalenti@unime.it