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ABSTRACT. We have performed extensive computer simulations of the thermodynamic
and structural properties of the krypton rare gas modeled by the modified Buckingham
exponential-6 interatomic potential. Using a new set of potential parameters, we have
found a good agreement with the room temperature equation of state at very high pressure
obtained by diamond anvil cell experiments. Moreover, the melting line of the model has
been estimated through the Lindemann criterion; the agreement with the low-pressure ex-
periments is excellent, whereas at higher pressure, the model poorly reproduces the typical
softening of the experimental melting curve.

1. Introduction

In the last decade a renewed interest in the properties of rare gases (RG) at high pres-
sures and temperatures (HP/HT) has emerged, mainly because new sophisticated equip-
ments, like the Laser-Heated Diamond Anvil Cell [1], made available new experimental
results at these extreme thermodynamic conditions. These experiments have shown an
unexpected behaviour in the melting line of heavier rare gases like Argon, Krypton and
Xenon [2, 3, 4]. Anomalous features have also emerged in the composition of terrestrial
atmosphere, in particular the little abundance of Xenon with respect to the lighter Argon
and, especially, Krypton. This phenomenon is known as “missing Xenon paradox” [5, 6]
and in order to be explained some hypothesis have been proposed. One of these hypoth-
esis is based on the possibility that RG degassed from the interior of the Earth and for
some reason the Xe remained trapped deep inside the planet. In favour of such scenario,
the high pressure experiments mentioned above show that Ar, Kr and Xe may be solid at
mantle conditions [2, 3, 4]. In these experiments the conditions found in the deep interior
of the Earth are reproduced by exposing a material at pressures of hundreds of giga pascal
and temperatures of thousands of Kelvin. It is known, in fact, that the pressure on the
internal mantle is around 150 GPa and the temperature reaches ∼ 4000 K; whereas in the
core the pressure reaches ∼ 300 GPa and temperature ∼ 6000 K [1, 7]. In this regimes the
uncertainty in the experiments is very high and also theoretical calculations face severe dif-
ficulties; as an example, recent studies have rescaled down the temperature of the internal
core to 4500-5000 K [8]. In this context numerical computer simulations play an increas-
ingly important role: on the one side, the powerful ab-initio numerical techniques should
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be the most adequate tools to investigate the chemical-physics properties of materials under
these extreme conditions [1]; on the other side, for the case at issue, preliminary classical
numerical simulations may be very useful in providing new details and “economic” (from
the time-consuming point of view) insights to be used for further, more complex investi-
gations. In this work we present new and extensive classical numerical simulations of the
melting line of Krypton in HP/HT regime. The outline of the paper is the following. In
Sec. 2 we shortly introduce the diamond anvil cell experiments. The interatomic potential
used in the computer simulations is presented in Sec. 3. In Sec. 4 we describe the Monte
Carlo technique whereas Sec. 5 is devoted to presentation of results. Concluding remarks
are reported in Sec. 6.

2. High pressure experiments

The melting curves of the RG solid have been measured by a variety of HP, low tempera-
ture techniques up to a few kilobars. For the heavier RG solids, where melting temperatures
start to exceed the range accessible by conventional methods, diamond anvil cells turn out
to be the only tool for investigating HP/HT regimes [7]. In the last decades the diamond
anvil cell apparatus, invented nearly fifty years ago, has developed into a versatile tool
for a broad spectrum of HP research topics, ranging from low-temperature physics to HT
geoscience. Recently, the combination of HP/HT conditions, generated by two opposed
diamond anvils and infrared lasers, has allowed the simulation of the planetary interiors,
the discovery of new structures and behaviour in elements and the synthesis of novel hard
materials [9]. With the laser-heated diamond anvil cell (LH-DAC) apparatus it is possible
to reach pressures of about 200 GPa and temperatures beyond 3000 K [1]. Usually, the
LH-DAC apparatus is coupled with spectroscopic instrumentations for detecting HP phase
transitions using a variety of methods [1]. However, the uncertainty on this experiments
is still too large and at present high-P-T research is still controversial. Results can differ
significantly among major international laboratories [9].

3. The exp-6 model

It is well known that at ambient pressure and temperature the rare-gas thermal behaviour
is well accounted for by the simple Lennard-Jones pair potential. However, this is not true
when rare gases are very dense: the LJ potential fails in HP/HT regime. For these systems
the three-body contributions to the effective potential are almost important as the pair-
wise contributions producing a repulsive shoulder softer than that of the LJ potential (see
Fig. 1). A classical approach consists in adding explicitly the Axilrod-Teller three-body
potential to an analytical function built fitting low-density experimental data [10, 11, 12].
However, it is noted that the evaluation of three-body terms is strongly time consuming.
A valid alternative to these sophisticated functional forms is to use empirical effective pair
potentials, parameterized using high-density experimental data [14, 15, 16, 17]. A suitable
model is the exp-6 interparticle potential [18], in which the adjustable parameters include
the effects of many-body interactions [19], taking into account the three-body contributions
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FIGURE 1. Comparison of intermolecular potential functions for Kr:
The solid line is the modified Buckingham potential with α = 13.2,
ε/kB = 158.3 K, rm = 4.056 Å; The dashed line is the modified Buck-
ingham potential with α = 13.0, ε/kB = 190 K, rm = 4.083 Å; The
solid circles represent the Lennard-Jones potential obtained using the
parameters provided by Ref. [13].

TABLE 1. Interatomic potential parameters employed in the present
work (kB being the Boltzmann constant).

Potential α rm or σLJ [Å] ε/kB [K]
LJ 3.680 166.7
EXP-6 13.0 4.083 190.0
EXP-6 13.2 4.056 158.3

isotropically [19, 20]. The analytical form of the exp-6 potential is:

(1) v(r) =

 +∞ r < σ

− ε
α− 6

{
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(rm
r

)6 − 6 exp
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α

(
1− r

rm

)]}
r ≥ σ

where α controls the softness of the repulsion at small intermolecular separations and ε > 0
is the depth of the potential minimum located at rm. We have selected the value of σ in
such a way that, for any α and rm the function appearing in the second line of Eq. 1 reaches
its maximum at σ. Hence, as r moves down to σ, v(r) reaches a stationary value and then
goes abruptly to infinity [21]. In Table 1 we report the parameters we have used in our
numerical simulations. In Fig. 1 we compare the exp-6 potential for two different values
of α (13 and 13.2) with the Lennard-Jones potential [13]. As visible, the repulsion in the
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LJ interaction is stiffer than that of the exp-6 potential. This difference turns out to be not
relevant at ambient pressure, but becomes crucial at high pressure. During the numerical
simulations we used dimensionless variables for temperature, pressure and density, i.e.,
T ∗ = kBT/ε, P ∗ = Pr3

m/ε and ρ∗ = ρr3
m, respectively.

4. Monte Carlo simulations

We have performed extensive Monte Carlo (MC) simulations of the exp-6 model in the
canonical ensemble (i.e., at constant temperature T , volume V , and number N of particles),
using the standard Metropolis algorithm for sampling the equilibrium distribution in con-
figurational space. The values of N that we have considered fit to a cubic simulation box
with an integer number of cells N = 4n3 for the face-centered-cubic (FCC) solid, n being
the number of cells along any spatial direction. For a given particle number, the length
L of the box side is adjusted to a chosen density value ρ, i.e., L = (N/ρ)1/3. If a is the
distance between two nearest-neighbour reference lattice sites, we have a = (

√
2/2)(L/n)

for an FCC crystal. After carrying out a rigorous size dependence analysis we have studied
a sample composed by N = 864 particle, using standard periodic boundary conditions. As
a rule the last MC configuration at a given ρ has served, after suitable rescaling of particle
coordinates, as the starting configuration for the run at a slightly lower density. The FCC
solid path is followed until the fluid spontaneously forms during the MC run, as evidenced
by the abrupt change in energy and pressure. For each ρ and T , equilibration of the sam-
ple typically takes 5 × 103 MC sweeps, a sweep consisting of one attempt to sequentially
change the position of all particles. The maximum random displacement of a particle in a
trial MC move has been adjusted once a sweep during the run so to keep the acceptance
ratio of the moves as close as possible to 50%, with only small excursions around this
value.

For given NV T conditions, the relevant thermodynamic averages have been computed
over a trajectory whose length ranges from 2 × 104 to 6 × 104 sweeps. In particular, the
excess energy per particle uex, the pressure P , and the mean square deviation δR2 of a
particle from its reference lattice position have been especially monitored. Pressure comes
from the virial formula,

(2) P = ρkBT +
〈V ir〉

V
, V ir = −1

3

∑
i<j

rijv
′(rij)

(rij is the distance between particles i and j). In practice, in order to avoid double counting
of interactions, the pair potential has been truncated above a certain cutoff distance rc,
which is only slightly smaller than L/2. Then, the appropriate long-range corrections have
been applied to energy and pressure by assuming g(r) = 1 beyond rc, g(r) being the
radial distribution function (RDF). The RDF histogram has been constructed with a spatial
resolution of ∆r = rm/50 and updated every 10 MC sweeps.

In order to evaluate the numerical errors affecting the main statistical averages, we have
divided the MC trajectory into ten blocks and estimated the length of the error bars as
being twice the empirical standard deviation of the block averages from the mean (under
the implicit assumption that the decorrelation time of any relevant variable is less that the
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FIGURE 2. Pressure evolution of the pair distribution functions g(r) of
exp-6 model with α = 13.2, ε/kB = 158.3 K, rm = 4.056 Å, as obtained
by MC simulations at room temperature. The melting point of Kr is
estimated at P = 0.83 GPa [22].

size of a block). Tipically, the relative errors of energy and pressure is smaller than few
tenths of a percent.

5. Results and discussion

In Fig. 2 we report the pressure evolution of RDF calculated at T = 300 K for three
different pressures (P = 0.77, 0.80, 1.12 GPa), using the exp-6 potential with α = 13.2
(ε/kB = 158.3 K, rm = 4.056 Å). Approximately at P = 0.80 GPa the corresponding
RDF does not show more the typical solid-like behavior (sharp and narrow Bragg’s peaks)
indicating that the system begins to melt (solid line in Fig. 2). This value is in excellent
agreement with the experimental estimate of the Kr melting point at T = 300 K (P = 0.83
GPa [22]) and testify the reliability of the exp-6 potential at ambient temperature.

5.1. Room temperature equation of state. From the theoretical point of view the studies
on the equation of state (EoS) can be classified in two categories: the zero-Kelvin quantum
mechanical calculations [12, 23, 24] and the alternative approaches based on empirical or
semiempirical intermolecular potentials at nonzero temperatures [10, 12, 16, 17, 25]. In
this paragraph we show MC estimates of the room temperature EoS of Kr modeled through
the exp-6 or LJ interatomic potentials. In Fig. 3 we report the experimental data with our
MC results. The room temperature EoS (pressure-volume relationship) has been measured
for solid Kr through DAC experiments up to 130 GPa [2]. In particular, we compare the
pressure-volume predictions between the exp-6 with α = 13, ε/kB = 190 K, rm = 4.083
Å and the LJ potential [13]. It is evident from Fig. 3 that the exp-6 potential reproduces
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FIGURE 3. Equation of state of exp-6 potential with α = 13.0, ε/kB

= 190 K, rm = 4.083 Å (solid line) and of LJ potential (dash-dotted
line) at T = 300 K. We plot also the volume data obtained through many
different HP experimental techniques. Solid circles: from Fig. 1 of
Ref. [2]; open circles: from Fig. 8 of Ref. [30]; diamonds: from Table I
of Ref. [31]; triangles: from Ref. [32]. Uncertainties in our MC results
are smaller than the symbol size.

the low- and intermediate pressure data better than the LJ potential. The agreement with
different experimental results is excellent up to P = 50 GPa. Instead, (see Fig. 4) a new set
of exp-6 parameters (α = 13.2, ε/kB = 158.3 K, rm = 4.056 Å) is needed to reproduce
the high-pressure data up to P = 140 GPa. As already observed by Ross et al. [19], it
turns out that even a three-parameter potential is not sufficiently flexible to fit both the very
high and very low pressure data.

5.2. Lindemann estimates and the melting line. In order to estimate the melting line of
Krypton we have used the Lindemann criterion [26]. Of course, the one-phase indicators
must be limited in their ability to yield quantitative predictions [27]. Notwithstanding their
use may be very helpful in gaining qualitative information with only one-phase ingredients
about the location of the phase transitions points [28].

The Lindemann ratio L is defined as the root mean square displacement of particles in a
crystalline solid about their equilibrium lattice positions, divided by their nearest-neighbor
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FIGURE 4. Equation of state of exp-6 potential with α = 13.0, ε/kB

= 190 K, rm = 4.083 Å (solid line) and with α = 13.2, ε/kB = 158.3
K, rm = 4.056 Å (dashed line) at T = 300 K. Symbols like in Fig. 3.
Uncertainties in our MC results are smaller than the symbol size.

distance a:

(3) L =
1
a

〈
1
N

N∑
i=1

(∆Ri)
2

〉1/2

,

where N is the number of particles and the brackets 〈· · · 〉 denote the average over the
dynamic trajectories of the particles. The Lindemann criterion states that the crystal melts
when L overcomes some “critical” (yet not specified a priori) value Lc [26]. Obviously,
one hopes this latter quantity is approximately the same for different pair potentials and
thermodynamic conditions. In fact, the Lindemann ratio is not universal at all, its values
spanning in the range 0.12− 0.19. More specifically, Lc is reported to be 0.15− 0.16 in a
FCC solid and 0.18− 0.19 in a body-centered-cubic (BCC) solid (see, e.g., [29]).

In a recent article Saija et al. [27] have shown that a good choice of the Lindemann
ratio value in order to detect the melting of a exp-6 FCC solid is Lc ≈ 0.15. Since the
FCC structure is known to be the stable phase for the heavier RG, we have applied the
Lindemann rule to estimate the melting coexistence line in the case of Kr. Our scope is
to study the pressure/temperature range of reliability of the exp-6 interatomic potential in
reproducing the experimental melting boundaries. In Fig. 5 we compare our exp-6 MC
results, obtained with α = 13 (ε/kB = 190 K, rm = 4.083 Å) and α = 13.2 (ε/kB
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FIGURE 5. The melting points (solid circles) for Kr obtained with DAC
experiments Ref. [3]. The solid and dashed lines are the Lindemann
estimates obtained by MC simulations of exp-6 model with α = 13.2
(ε/kB = 158.3 K, rm = 4.056 Å) and α = 13.0 (ε/kB = 190 K, rm =
4.083 Å), respectively. The empirical Simon-Glatzel (dash-dotted) and
modified Simon-Glatzel (dotted) equations are also plotted [7].

= 158.3 K, rm = 4.056 Å), with some recent experimental melting data measured in
a LH-DAC apparatus [3]. In the same plot we also report the empirical Simon-Glatzel
(SG) and the modified Simon-Glatzel (mSG) equation, which are simple parametrization
of melting curves. The SG relation has been shown to be related to the Lindemann law
under special conditions which are expected to break down at high compressions [33]. The
MC results are in good agreement with LH-DAC measurements and the predictions of the
SG equations up to P = 50 GPa. Above these pressures, there occurs a considerable
decrease in the melting slope, which seems to be a common feature for all heavier RG [3].
Very recently, Ross et al. [34] have shown that the bend in the melting curve in heavier
RG may be due to symmetry breaking of the interatomic potential created by the p − d
hybridization of the outer electronic shell. More specifically, with increasing pressure the
electronic configuration of heavier RG is such that neither the atom nor the interatomic
potential can be easily treated as spherically symmetric objects. Probably, this quantum
effect becomes prevalent in HP/HT regions making a simple two-body classical treatment
unreliable.

6. Concluding remarks

In this work we have performed extensive Monte Carlo simulations of the exp-6 model,
a pairwise additive spherically symmetric interparticle potential that is expected to give a
realistic description of some structural properties of rare gases solid under extreme ther-
modynamic conditions. More specifically, we have proposed two new independent sets of
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parameters for the solid Krypton rare gas which allow to reproduce accurately enough new
recent diamond anvil cell experiments for the room temperature equation of state [2]. Start-
ing from this finding we have tried to estimate through the one-phase Lindemann criterion
the melting coexistence line of Krypton. As already obtained for the Xenon [21], we have
found that the agreement between the exp-6 MC results and the diamond anvil cell experi-
ments worsens with increasing temperature and pressure. Indeed, the experiments showed
an anomalous lowering in the melting slope, due to quantum effects [34], that cannot be
accounted for by a simple classical treatment.
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