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ABSTRACT. In this paper we propose a rigorous formulation for Feynman’s propagator
of Quantum Mechanics; the space in which we build up the propagator is the space of
tempered distributions S′

n.
The goals of the paper are the following ones:
1) a rigorous and operative definition of Feynman’s propagator in S′

n;
2) the basic indications for a straightforward and not-ambiguous calculus for the prop-

agators, easy to teach and use;
3) a rigorous formulation and proof of the famous Feynman’s Transition Amplitudes

Theorem, in the space of tempered distributions; and of one its original generalization.

1. Introduction

The paper deals with a well known Feynman theorem: the Transition Amplitudes The-
orem for an abstract dynamical system (physical, biologic, economic, . . . ). This Theorem
gives the probability that the considered system pass from a state to another.

Of this theorem there is no a rigorous proof, neither in the context of Hilbert spaces, but
this is not the worse problem; the very critical point is that there is not a clear, univocal
and unambiguous statement of the result; this affect badly on the use of this indubitably
good result, firstly because it is not clear what is the precise means of the symbols and
operations that Feynman presents, and secondly because the context proposed (the Hilbert
spaces) appear, at a deep view, inadequate indeed for its application. Nevertheless, its
efficiency in the applications, thanks to the good intuitions of physicists, made it a basic
instrument in many questions of experimental, computational and theoretical analysis of
dynamical systems.

The paper presents a good-founded and rigorously proved version of Feynman theorem,
in a form much close to the original one, but in a context quite different from the standard
setting of Hilbert spaces: the theorem is stated in the context of tempered distributions.

In the Laurent Schwartz’ spaces we have to redefine all the objects appearing in the
Feynman Theorem (not all clearly defined neither in Hilbert spaces), and we shall use
technics very far from those of Hilbert spaces.

We have to note that the a tempered distribution takes the place of the transition ampli-
tudes. To better understand the situation we need a confrontation. In Hilbert spaces the
transition amplitude from a condition (t, u) to another (t′, u′) is the scalar product (u|u′):
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then a complex number. In the space of tempered distributions the situation is more com-
plicated, firstly because we have not a scalar product. Secondly, the system can pass from
a state u (a pure state) to one of the infinite states of a continuous family w, namely the
family of eigenstates of an S-observable; this is the very case of Feynman Theorem. Now
we have to use the S-Linear Algebra which, since w is a regular family being the eigenba-
sis of an S-observable, is able to compute the product of u with the family w, the result is
a tempered distribution but in general not a regular one.

The surprise is that after few definitions, the Feynman theorem, in the form desired by
Feynman, becomes at last a correct statement readily provable, showing, an unexpected
and strong connection with the change of basis Theorem of Linear Algebra, as we prove in
the paper.

2. The Feynman propagators

In this paper the S-Linear Algebra in the space S ′n is systematically used, for it can be
seen [1, 2, 3, 4, 5].

Definition (of Feynman propagator). We call a function

G : R2 → S (Rn,S ′n) ,

associating to each pair of times an S-family in S ′n, S-propagator if, for every real t,
G(t, t) = δ, where δ is the Dirac family in S ′n. Moreover, G is said a Feynmann propagator
if

1) for every real t, G(t, t) = δ;
2) for every pair of reals t0 and t, the family G(t0, t) is invertible and

G(t0, t) = G(t, t0)−1;

3) for every triple of times t0, t1 and t2, we have

G(t0, t2) = G(t0, t1) ·G(t1, t2).

Remark. A propagator G is then defined as an S-family-valued function; so we have

G(t0, t) = (G(t0, t)y)y∈Rn ,

for every pair of times (t0, t).

Remark. Note that, in the above definition, 2 derives from 1 and 3. In fact, from 3 we
have, for t2 = t0,

G(t0, t0) = G(t0, t1) ·G(t1, t0),
and then, applying 1 (G(t0, t0) = δ), we obtain 2.

Definition (propagator of a process). Let u : R → S ′n be a process in the space S ′n.
We say that a propagator

G : R2 → S (Rn,S ′n)
is a Green function, or a propagator, for u if

u(t) =
∫

Rn

u(t0)G(t0, t),
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for every t0 and t in T .

Remark. Hence G(t0, t) is a family such that the state of u at the time t is the superpo-
sition of the family G(t0, t) with respect to the system of coefficients coinciding with the
state of u at t0.

Remark. If a process u admits a Feynman propagator, then it is a strongly causal
and reversible process. In fact, by definition, the state of the process at every time t0,
determines the state of the process at every other time t. Moreover, u is reversible, since,
if

u(t) =
∫

Rn

u(t0)G(t0, t),

then

u(t0) =
∫

Rn

u(t)G(t0, t)−1.

3. The evolution operators

Definition (evolution operator). An evolution operator in S ′n is a function

E : R× S ′n → C0 (R,S ′n) ,

i.e., an operator sending every initial condition (t0, u0) belonging to R×S ′n into a process

E(t0,u0) : R → S ′n,

such that
1) E(t0,u0)(t0) = u0 for every initial condition (t0, u0);
2) if E(t,u)(t0) = u0 then E(t0,u0)(t) = u for every (t0, u0) and (t, u);
3) if E(t0,u0)(t1) = u1 and E(t1,u1)(t2) = u2 then E(t0,u0)(t2) = u2.

Remark. In other terms, a mapping

E : R× S ′n → C0 (R,S ′n) ,

is an evolution operator if and only if the binary relation =E on the time-states space R×S ′n
defined by

(t0, u0) =E (t, u) if and only if E(t0,u0)(t) = u,

is an equivalence relation.

Definition (the propagator of an evolution). Let E be an evolution operator. We say
that a function

G : R2 → S (Rn,S ′n)
is a Green function, or propagator, for E if

E(t0,u0)(t) =
∫

Rn

u0G(t0, t),

for every u0 in S ′n and for every t0 and t in R.

Theorem. Let
E : R× S ′n → C0 (R,S ′n) ,
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be an operator that sends every initial condition (t0, u0) belonging to R×S ′n into a process

E(t0,u0) : R → S ′n;

and let
G : R2 → S (Rn,S ′n) ,

be a family-valued function such that

E(t0,u0)(t) =
∫

Rn

u0G(t0, t),

for every u0 in S ′n and for every t0 and t in R.
Then, E is an evolution operator if and only if G is a Feynman propagator.

Proof. Assume E be an evolution operator, we must verify the properties of the Feyn-
man propagator.

1) Let t be a real; for every state u, we have

u = E(t,u)(t) =
∫

Rn

uG(t, t);

thus G(t, t) = δ.
2) Consider two instant of time t0 and t. For every state u0 in S ′n set

u := E(t0,u0)(t) =
∫

Rn

u0G(t0, t);

by axiom 2, we have

u0 = E(t,u)(t0) =
∫

Rn

uG(t, t0),

then, consequently

u0 =
∫

Rn

(∫
Rn

u0G(t0, t)
)

G(t, t0) =
∫

Rn

u0

∫
Rn

G(t0, t)G(t, t0).

This is equivalent to ∫
Rn

G(t0, t)G(t, t0) = δ,

and then
G(t0, t) = G(t, t0)−1.

3) Consider three instants of time t0, t1 and t2, we have

G(t0, t2) = G(t0, t1) ·G(t1, t2).

In fact, if E(t0,u0)(t1) = u1 and E(t1,u1)(t2) = u2 then E(t0,u0)(t2) = u2. Now
E(t0,u0)(t1) = u1 is equivalent to∫

Rn

u0G(t0, t1) = u1,

and E(t1,u1)(t2) = u2 is equivalent to∫
Rn

u1G(t1, t2) = u2.
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Hence

u2 =
∫

Rn

u1G(t1, t2) =

=
∫

Rn

(∫
Rn

u0G(t0, t1)
)

G(t1, t2) =

=
∫

Rn

u0

∫
Rn

G(t0, t1)G(t1, t2).

On the other hand, we have

u2 = E(t0,u0)(t2) =
∫

Rn

u0G(t0, t2),

and so ∫
Rn

u0G(t0, t2) =
∫

Rn

u0

(∫
Rn

G(t0, t1)G(t1, t2)
)

,

thus
G(t0, t2) = G(t0, t1) ·G(t1, t2).

The viceversa is a simple calculation. �

4. Operator-valued propagators

Definition (operator-valued propagator). An operator-valued propagator is a func-
tion

S : R2 → SEnd(S ′n),
i.e. it is an operator-valued function, verifying the following properties:

1) S(t0, t0) = (·)S′
n

;
2) S(t0, t)−1 = S(t, t0);
3) S(t0, t1) ◦ S(t1, t2) = S(t0, t2).

The following evident theorem shows the relation among operator-valued and Feynman
propagators.

Theorem. Let S : R2 → SEnd(S ′n) be an operator-valued function, and let

G : R2 → S (Rn,S ′n) ,

be a family-valued function such that, for every y ∈ Rn,

G(t0, t)y = S(t0, t)δy.

Then, S is an operator-valued propagator if and only if G is a Feynman propagator.

Definition. Let u : R → S ′n be a process is S ′n. The process u is said generated by an
operator-valued function

S : R2 → SEnd(S ′n),
if, for every pair of times t and t0, we have

u(t) = S(t0, t)u(t0).
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Theorem. Let S : R2 → SEnd(S ′n) be an operator-valued propagator, and let u :
R → S ′n be a process generated by S. Then, the function

G : R2 → S (Rn,S ′n) ,

defined by

G(t0, t)y = S(t0, t)δy,

for every y in Rn, i.e., by G(t0, t) = S(t0, t)δ, is a Green function for u.

Proof. In fact, by the S-linearity of S(t0, t) we have

u(t) = S(t0, t)
∫

Rn

u(t0)δ =
∫

Rn

u(t0)S(t0, t)δ. �

Theorem. Let the operator valued function

S : R2 → SEnd (S ′n)

be of the form

S(t0, t) = exp(−i(t− t0)H),

for some S-diagonalizable operator H . Then S is an operator-valued propagator.

Proof. It’s enough to prove that the Green function of S is a Feynman propagator. For
every times t0 and t, we have

G(t0, t) = S(t0, t)δ
(by definition of Green function)

= exp(−i(t− t0)H)δ =
(by assumption)

= exp(−i(t− t1 + t1 − t0)H)δ =
= exp(−i(t− t1)H) ◦ exp(−i(t1 − t0)H)(δ) =
= exp(−i(t− t1)H)(G(t0, t1)) =

= exp(−i(t− t1)H)(
∫

Rn

G(t0, t1)δ) =

(expanding in the Dirac basis)

=
∫

Rn

G(t0, t1) exp(−i(t− t1)H)δ =

(by S-linearity of exp(−i(t− t1)H))

=
∫

Rn

G(t0, t1)G(t1, t) =

= G(t0, t1) ·G(t1, t). �
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5. The Feynman’s propagator of a free particle

Let us evaluate the Green function of the evolution of a free particle. The operator-
valued propagator, in this case, is of the form

S(t0, t) = exp(− i

~
(t− t0)H),

where H is the S-linear operator defined by

H =
1

2m
P 2,

where
P : S ′1 → S ′1 : u 7→ −i~u′

is the momentum operator on S ′1. Moreover, let ϕ be the Dirac-orthonormal standard
eigenbasis of P , that is the following family of regular tempered distributions

ϕ =
(

1√
2π~

[
e−

i(p|·)
~

])
p∈R

.

It’s obvious that Pϕp = pϕp, for every real p. We have, for every real q,

G(0, t)q = exp(−itH)(δq) =

= exp(−itH)(
∫

Rn

(δq | ϕ)ϕ) =

=
∫

Rn

(δq | ϕ) exp(−itH)(ϕ) =

=
∫

Rn

[δq | ϕ] exp(−it
(·)2

2m
)ϕ =

=
∫

Rn

exp(−it
(·)2

2m
)
(∫

Rn

δqϕ
−1

)
ϕ =

=
∫

Rn

exp(−it
(·)2

2m
)
(∫

Rn

δqϕ

)
ϕ =

=
∫

Rn

exp(−it
(·)2

2m
)ϕqϕ.

The family ϕ is a regular family, and denoted by fq the S-function generating the regular
tempered distribution ϕq, the function

exp(−it
(·)2

2m
)fq

is an S-function (it the product of a bounded function by an S-function). Hence the super-
position ∫

Rn

exp(−it
(·)2

2m
)ϕqϕ

is a regular distribution of class S; say gq the generating S-function, it’s simple to see that

gq(q′) =
∫

Rn

exp(−it
p2

2m
)fq(p)fp(q

′
)dp,
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in fact, the superposition

[gq] =
∫

Rn

exp(−it
(·)2

2m
)ϕqϕ

is the Fourier transform of the tempered distribution

exp(−it
(·)2

2m
)ϕq,

and so gp is the Fourier transform of the function

p 7→ exp(−it
p2

2m
)fq(p).

Substituting the expression of f , we have

gq(q′) =
∫

Rn

exp(−it
p2

2m
)fq(p)fp(q′)dp =

=
1

2π~

∫
Rn

exp(−it
p2

2m
) exp(

ipq

~
) exp(− ipq′

~
)dp =

=
1

2π~

∫
Rn

exp(−it
p2

2m
+

ipq

~
− ipq′

~
)dp.

The last integral is classic, after the standard calculation, we, at last, conclude

G(0, t)q = [gq] =
[( m

2πit

)1/2

eim((·)−q)2/2t

]
.

6. Feynman’s theorem on transition amplitudes and one generalization

Definition (of transition amplitude). Let S be the operator-valued propagator in S ′n
of a process, let u0 be a state (tempered distribution) of the process and t, t0 two times.
Assume W be an S-observable of the system with a regular S-eigenbasis w. The transition
amplitude from condition (t0, u0) to the multicondition (t, w) is, by definition, the tempered
distribution

〈w | S(t0, t)u〉 .

Interpretation. The Dirac scalar product 〈w | S(t0, t)u〉 is the probability-distribution
of transition amplitudes from the time-state (t0, u) to each time state (t, wi).

Theorem (the fundamental Feynman’s relation for transition amplitudes). Let V
and W be two S-observables (of a system) with S-eigenbases v and w respectively. Let
S be an operatorial propagator (of the system), and assume that S is with unitary values,
i.e., assume that

〈S(t1, t0)w | u〉 = 〈w | S(t0, t1)u〉 ,
for every t0, t1 in T , and for every tempered distribution u.

Then, for every triple of times t0, t1, t2 and for every state u, we have

〈w | S(t0, t)u〉 =
∫

Rn

〈S(t, t1)w | v〉 〈S(t1, t0)v | u〉 .
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Proof. We have

〈w | S(t0, t)u〉 = 〈S(t, t0)w | u〉 =
= 〈S(t, t1)S(t1, t0)w | u〉 =
= 〈S(t, t1)w | S(t0, t1)u〉 =

=
∫

Rn

〈S(t, t1)w | v〉 〈v | S(t0, t1)u〉 =

=
∫

Rn

〈S(t, t1)w | v〉 〈S(t1, t0)v | u〉 . �

Now we pass to the generalization. We first need a theorem.

Theorem. Let w ∈ S(Rm,S ′n) and let A : S ′n → S ′n be an invertible S-linear operator.
Then, the following assertions hold true

1) w is S-linearly independent if and only if the family Aw is S-linearly independent;
2) Sspan(Aw) = A

(Sspan(w)
)
;

3) if w is S-linearly independent, for each u ∈ A
(Sspan(w)

)
, we have

[u | Aw] = [A−1u | w].

Proof. 1) Let w be S-linearly independent and let a belong to S ′m such that∫
Rm

aA(w) = 0S′
n
.

Applying A−1, we obtain

0S′
n

= A−10S′
n

= A−1

∫
Rm

aA(w) =
∫

Rm

aA−1A(w) =
∫

Rm

aw.

Since w is S-linearly independent we deduce a = 0S′
n

, and then Aw is S-linearly inde-
pendent too.

2) Let u ∈ A
(Sspan(w)

)
. Then, there exists an a ∈ S ′m such that u = A

∫
Rm aw.

Thus, we have

u =
∫

Rm

aAw,

so u ∈ Sspan(Aw), and hence A
(Sspan(w)

)
⊆ Sspan(Aw).

Viceversa, let u ∈ Sspan(Aw). Then, there exists an a ∈ S ′m such that

u =
∫

Rm

aAw,

and hence,

u = A

∫
Rm

aw,

and hence u ∈ A
(Sspan(w)

)
, hence Sspan(Aw) ⊆ A

(Sspan(w)
)
. Concluding

Sspan(Aw) = A
(Sspan(w)

)
.

3) For every u ∈ Sspan(A−1w) e have

u =
∫

Rm

[u | A−1w]A−1w,
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applying A,

Au =
∫

Rm

[u | A−1w]AA−1w =
∫

Rm

[u | A−1w]w,

so, Au belongs to Sspan(w) and

[Au | w] = [u | A−1w]. �

Theorem. Let V and W be two observables of a system with S -eigenbases v and w
respectively. Let S be an operator-valued propagator of the system. Then, for every triple
of times t0, t1, t and, for every state u, we have

[S(t0, t)u | w] =
∫

Rn

[S(t0, t1)u | v] [S(t1, t)v | w] .

Proof. Applying the preceding theorem and the change of basis theorem

[S(t0, t)u | w] = [S(t0, t1)S(t1, t)u | w] =
= [S(t0, t1)u | S(t, t1)w] =

=
∫

Rn

[S(t0, t1)u | v] [v | S(t, t1)w] =

=
∫

Rn

[S(t0, t1)u | v] [S(t1, t)v | w] . �

References
[1] D. Carfı̀, “S-linear operators in quantum mechanics and in economics”, APPS 6, 7 (2004).
[2] D. Carfı̀, “Dirac-orthogonality in the space of tempered distributions”, Journal of Computational and Applied
Mathematics 153, 99 (2003).

[3] D. Carfı̀, “S-diagonalizable operators in quantum mechanics”, Glasnik Mathematicki 40, 267 (2005).
[4] D. Carfı̀, “On the Schodinger’s equation associated with an operator admitting a continuous eighenbasis”,

Rendiconti del Seminario Matematico di Messina (Serie II) 8, 221 (2001).
[5] D. Carfı̀, “Quantum statistical systems with a continuous range of states” in Applied and Industrial Math-

ematics in Italy - Proceedings of the 7th Conference, World Scientific Series of Advances in Mathematics for
Applied Sciences, vol. 69, p. 189 (World Scientific, Singapore, 2005).

David Carfı̀
Faculty of Economics, University of Bergamo
via Dei Caniana 2, Bergamo
Faculty of Economics, University of Messina
via dei Verdi 75, Messina
E-mail: davidcarfi@eniware.it

Presented: May 15, 2006
Published on line on March 19, 2007


