BUFFON TYPE PROBLEMS WITH MULTIPLE INTERSECTIONS
FOR REGULAR LATTICES

VITTORIA BONANZINGA * and LOREDANA SORRENTI *

ABSTRACT. In this paper we study Buffon type problems with multiple intersections for
lattices of equilateral triangles and a circle as test body.

1. Introduction

In papers [1] and [2] A. Duma and M. Stoka studied Buffon type problems with mul-
tiple intersections for lattices of the Euclidian plane \(\mathbb{E}_2 \), with a parallelogram \(\mathcal{P} \) and an
equilateral triangle \(\tau \), elementary tile respectively, and a segment of constant length.

In this paper, we consider two lattices, \(\mathcal{R}_1 \) and \(\mathcal{R}_2 \), with the same fundamental cell, an
equilateral triangle \(\tau \) of side \(a \). Hence, we determine the probability of multiple intersec-
tions of the test body, a circle of constant radius \(r \) with the sides of the lattices \(\mathcal{R}_1 \) and \(\mathcal{R}_2 \),
respectively.

2. Geometric probability of multiple intersections for the lattice \(\mathcal{R}_1 \)

Considering the lattice \(\mathcal{R}_1 \), we denote by \(p_{1i} \), \((i = 1, 2, \ldots, 6) \) the probability that the
body test intersects the sides of the lattice \(i \)-times.

Theorem 1. If \(r < a \frac{\sqrt{3}}{6} \), the probabilities that a circle \(C \) of constant radius \(r \), uniformly
distributed in a bounded region of the plane, intersects, the sides of the lattice \(\mathcal{R}_1 \), \(i \)-times,
\((i=1, \ldots, 6) \), are respectively

\[
\begin{align*}
p_{11} &= p_{13} = p_{15} = 0, \\
p_{12} &= \frac{12}{\sqrt{3} a} \left(\frac{r}{a} \right)^2, \\
p_{14} &= p_{16} = 4 \frac{r^2}{a^2}.
\end{align*}
\]
Figure 1.

Proof. We denote by \mathcal{M} the set of circles of radius r with center $C(x, y)$ which belongs to τ. Then, as in figure 2, the test body intersects the sides of the triangles τ i-times, $(i=1, \ldots, 6)$, (i.e. the sides of the lattice R_1), if and only if, $C \in \tau_i$, $i = 1, \ldots, 6$. Hence, putting $\mathcal{N}_i = \{(x, y) \in \tau_1\}, (i=1, \ldots, 6)$, we have

$$p_{1i} = \frac{\mu(\mathcal{N}_i)}{\mu(\mathcal{M})}, (i = 1, \ldots, 6),$$

where μ is the Lebesgue measure in the Euclidean plane. We can compute the previous measures using the elementary kinematic measure of Poincaré ([4])

$$dK = dx \wedge dy \wedge d\varphi;$$

where x and y are the coordinates of the center of C (or the components of a translation) and φ is the angle of rotation. We have

$$\mu(\mathcal{M}) = area \tau = \frac{a^2 \sqrt{3}}{4}.$$
We compute $\mu(\mathcal{N}_{12})$ observing that τ_{12} is union of three congruent trapeziums with bases of lengths $a - \frac{4r}{\sqrt{3}}$ and $a - \frac{6r}{\sqrt{3}}$ and height r. Then
\[\mu(\mathcal{N}_{12}) = \text{area } \tau_{12} = 3ar - \frac{15}{\sqrt{3}}r^2. \] (6)

The sets τ_{14} and τ_{16} are the union of three congruent equilateral triangles of side $\frac{2r}{\sqrt{3}}$, therefore
\[\mu(\mathcal{N}_{14}) = \mu(\mathcal{N}_{16}) = \text{area } \tau_{14} = \text{area } \tau_{16} = r^2\sqrt{3}. \] (7)

We observe that the circle never intersects once, three times or five times the sides of the lattice \mathcal{R}_1. From formulas (4), (5), (6) and (7) we have the probabilities (1), (2) and (3).}

Theorem 2. If $r < a\frac{\sqrt{3}}{6}$, the probabilities that a circle C of constant radius r, uniformly distributed in a bounded region of the plane, intersects, i sides $(i=1,\ldots,6)$, of the lattice \mathcal{R}_1 are respectively

\begin{figure}
\centering
\includegraphics{figure3}
\caption{Figure 3.}
\end{figure}

\begin{align}
\rho_{11} &= \frac{12}{\sqrt{3}} \frac{r}{a} - 20 \left(\frac{r}{a} \right)^2, \\
\rho_{12} &= 4 \frac{r^2}{a^2} \\
\rho_{13} &= \left(4 - \frac{2\pi}{\sqrt{3}} \right) \left(\frac{r}{a} \right)^2 \\
\rho_{14} &= \rho_{15} = 0 \\
\rho_{16} &= \frac{2\pi}{\sqrt{3}} \frac{r^2}{a^2}.
\end{align}

\textit{Proof.} With the same notations as in the previous theorem, as in Figure 3, the test body intersects \(i\) sides (\(i=1, \ldots, 6\)) of the lattice \(R_1\) if, and only if, \(C \in \tau_{l_1}i, i = 1, \ldots, 6\). Hence, putting \(N_{1i} = \{(x, y) \in \tau_{l_1}i\}, (i=1, \ldots, 6)\), we have

\[\rho_{1i} = \frac{\mu(N_{1i})}{\mu(M)}, \ (i = 1, \ldots, 6).\]

We compute \(\mu(N_{13})\) observing that \(\tau_{l_1}3\) is the union of three congruent surfaces, given as the difference between the area of an equilateral triangle of side \(\frac{2r}{\sqrt{3}}\) and the area of the
circular sector of radius \(r \) and angle \(\frac{\pi}{3} \), therefore
\[
\mu(\mathcal{N}_{13}) = \text{area } \tau_{l13} = r^2 \sqrt{3} - \frac{\pi}{2} r^2. \tag{14}
\]
The sets \(\tau_{l16} \) are the union of three congruent circular sectors of radius \(r \) and angle \(\frac{\pi}{3} \). Then
\[
\mu(\mathcal{N}_{16}) = \text{area } \tau_{l16} = \frac{\pi}{2} r^2. \tag{15}
\]
We observe that the circle never intersects four or five sides of the lattice \(\mathcal{R}_1 \), hence (11) follows. Since \(p_{l11} = p_{l12} = p_{l14} \) and from formulas (13), (14) and (15), we have the probabilities (8), (9), (10), (11) and (12).

Corollary 3. The probability that a circle \(\mathcal{C} \) of constant radius \(r < \frac{a \sqrt{3}}{6} \) intersects one of the sides of the lattice \(\mathcal{R}_1 \) is
\[
p = \frac{12}{\sqrt{3}} \alpha - 12 \left(\frac{r}{a} \right)^2. \tag{16}
\]

Proof. Taking into account that \(p = p_{l11} + p_{l12} + p_{l13} + p_{l14} + p_{l15} + p_{l16} \), formulas (8), (9), (10), (11) and (12) give the probability (16). \(\square \)

Remark Applying formula
\[
p_{3; a, \alpha} = 4 \left(\frac{1 + \cos \alpha}{\sin \alpha} \right) \left(\frac{r}{a} \right)^2 - 4 \left(\frac{1 + \cos \alpha}{\sin \alpha} \right)^2 \left(\frac{r}{a} \right)^2 \tag{17}
\]
of the probability that a circle of constant radius \(r \), uniformly distributed in a bounded region of the plane, intersects a straight line of the lattice \(\mathcal{R}_{3; a, \alpha} \) of lines, having an isosceles triangle as elementary tile with basis of length \(a \) and angles \(\alpha, \alpha \) and \(\pi - 2\alpha \), [3] with \(\alpha = \frac{\pi}{3} \), we obtain (16).

3. Geometric probability of multiple intersections for the lattice \(\mathcal{R}_2 \)

Now we consider the lattice \(\mathcal{R}_2 \) and we denote by \(p_{2i} \), \(i=1,2,3,4 \) the probability that the test body intersects the sides of the lattice \(i \)-times.

Theorem 4. If \(r < \frac{a \sqrt{3}}{6} \), the probabilities that a circle \(\mathcal{C} \) of constant radius \(r \), uniformly distributed in a bounded region of the plane, intersects the sides of the lattice \(\mathcal{R}_2 \), \(i \)-times, \((i=1,2,3,4) \), are respectively
\[
p_{21} = p_{23} = 0, \tag{18}
\]
\[
p_{22} = 4 \sqrt{3} \frac{r}{a} - \left(20 + \frac{2 \sqrt{3} \pi}{3} \right) \left(\frac{r}{a} \right)^2 \tag{19}
\]
\[
p_{24} = \left(8 + \frac{2 \pi \sqrt{3}}{3} \right) \left(\frac{r}{a} \right)^2 \tag{20}
\]

Proof. With the same notations as theorem 1, as in figure 4, the test body intersects the sides of the lattice \(\mathcal{R}_2 \) \(i \)-times \((i=1,\ldots,4) \) if, and only if, \(C \in \tau_{2i} \), \(i = 1, \ldots, 4 \). We compute \(\mu(\mathcal{N}_{22}) \) observing that \(\tau_{22} \) is the union of two congruent trapeziums with bases of lengths \(a - \frac{4r}{\sqrt{3}} \) and \(a - \frac{6r}{\sqrt{3}} \) and height \(r \) and a surface given as the difference between the area...
of a trapezium with bases of lengths $a - \frac{4r}{\sqrt{3}}$ and $a - \frac{6r}{\sqrt{3}}$ and height r, and the area of a semicircle of radius r and angle $\frac{\pi}{3}$. Then

$$\mu(\mathcal{N}_{22}) = \text{area } \tau_{22} = 3ar - \frac{15}{\sqrt{3}}r^2 - \frac{\pi}{2}r^2. \quad (21)$$

The sets τ_{24} is the union of three congruent rhombs of side $\frac{2r}{\sqrt{3}}$ and a semicircle of radius r. Then

$$\mu(\mathcal{N}_{24}) = \text{area } \tau_{24} = \left(2\sqrt{3} + \frac{\pi}{2}\right)r^2. \quad (22)$$

We observe that the circle never intersects the sides of the lattice \mathcal{R}_2 once or three times. From formulas (4), (5), (21) and (22) we have the probabilities (18), (19) and (20).

Considering the lattice \mathcal{R}_2, we denote by $p_{l_{2i}}$, ($i=1,2,3,4$) the probability that the test body intersects i sides of the lattice.

Theorem 5. If $r < a\frac{\sqrt{3}}{6}$, the probabilities that a circle C of constant radius r, uniformly distributed in a bounded region of the plane, intersects, i sides ($i=1,2,3,4$) of the lattice.
Buffon type problems . . .

R_2, are respectively

$$pl_{21} = 4\sqrt{3} \frac{r}{a} - \left(20 + \frac{2\sqrt{3}\pi}{3}\right) \left(\frac{r}{a}\right)^2,$$

(23)

$$pl_{22} = \left(8 - \frac{2\pi\sqrt{3}}{3}\right) \left(\frac{r}{a}\right)^2,$$

(24)

$$pl_{23} = 0,$$

(25)

$$pl_{24} = \frac{4\sqrt{3}\pi}{3} \left(\frac{r}{a}\right)^2.$$

(26)

Proof. With the same notations as theorem 1, as in figure 5, the test body intersects i sides ($i=1,\ldots,4$) of the lattice R_2 if, and only if, $C \in \tau l_{2i}$, $i = 1, \ldots, 4$. We compute $\mu(N_{2i})$ observing that τl_{21} is equal to τl_{22}. The set τl_{22} is the union of six congruent equilateral triangles of sides $\frac{2r}{\sqrt{3}}$ minus three circular sector of radius r and angle $\frac{\pi}{3}$. Then

$$\mu(N_{22}) = \text{area } \tau l_{22} = \left(2\sqrt{3} - \frac{\pi}{2}\right) r^2.$$

(27)
Finally, the set \(\tau_{l_{24}} \) is the union of three congruent circular sectors of radius \(r \) and angle \(\frac{\pi}{3} \), and the area of a semicircle of radius \(r \). Therefore

\[
\mu(N_{24}) = \text{area } \tau_{l_{24}} = \pi r^2.
\]

(28)

We observe that the circle never intersects the sides of the lattice \(\mathcal{R}_2 \) once or three times. From formulas (4), (5), (27) and (28) we have the probabilities (23), (24), (25) and (26).

\[\square\]

Corollary 6. The probability that a circle \(C \) of constant radius \(r < a \sqrt[3]{ \frac{3}{6} } \) intersects one of the sides of the lattice \(\mathcal{R}_2 \) is

\[
p = \frac{12}{\sqrt{3} a} r - 12 \left(\frac{r}{a} \right)^2.
\]

(29)

Proof. Taking into account that \(p = pl_{11} + pl_{12} + pl_{13} + pl_{16} \), formulas (23), (24) and (26) give the probability (29).

\[\square\]

References

\(\ast\) Università degli Studi di Reggio Calabria
Dipartimento di Informatica, Matematica, Elettronica e Trasporti
Via Graziella, Feo di Vito
89100 Reggio Calabria, Italy

\(\ast\) To whom correspondence should be addressed | e-mail: vittoria.bonanzinga@unirc.it

Presented 25 November 2009; published online 20 September 2010

© 2010 by the Author(s); licensee Accademia Peloritana dei Pericolanti, Messina, Italy. This article is an open access article, licensed under a Creative Commons Attribution 3.0 Unported License.