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Abstract.

This work concerns the optimization of circuit performances of a Two Stage Operational

Transconductance Amplifier. The problem arises from the circuit design flows which use sim-

ulators when these tools and their inner device models are considered as a black-box. The

performance specifications are targets of the optimization and are explored in a multiobjective

space. Solution ranking by Pareto dominance criterion leads to more stable multiobjective solu-

tions which is an important consideration from the design point of view. Evolutionary strategies

can exploit this solution rank by selection in order to get a set of non-dominated equivalent

solutions called Pareto optimal front.

1. Introduction

In microelectronic design a considerably time is spent on device sizing of analog circuit
in order to satisfy the performance requirements. The main reason is due to the non-linear
relation between device sizes and performances.3,6

In order to improve the efficiency of the device design in the analog circuits, multiob-
jective approach has been proposed as alternative to the approach of the cost functions.
In this study the optimization process is coupled to a circuit simulator (Spice) which
evaluates the circuit performances.5 The Spice simulator version used in our experiments
is ngspice (available at http://ngspice.sourceforge.net/), which implements the BSIM3
MOSFET model for the I-V characterization.1,4
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2. Two-Stage OTA Design

This case study proposes the MOS device sizing and the circuit net setting of an two-
stage Operational Transconductance Amplifier (OTA) (see figure 1). The OTA is a useful
device and it is used with few other devices to realize filters, comparators, wave generator,
converters, etc.
The circuit parameters and their ranges are showed in Table 1. The “W” parameters

Fig. 1. OTA circuit model

refers to the MOS channel width, L is referred to the MOS channel length, R (resistance)
and C (capacity) are referred to the circuit net parameters. Minimum performance spec-
ifications are formulated with the constraints in Table 3.

Parameters Ranges Unit

W1b = W1a 7 - 20 µm
W3 7 - 20 µm
W5 7 - 20 µm
L 0.525 - 0.875 µm
C 3 - 5 pF
R 20 - 40 KΩ

W4 7 - 20 µm
W2b = W2a 7 - 20 µm

I 1 - 15 µA

Many important performance metrics are considered in the OTA design. Those used in
this case study are the following:

Low frequency gain: It is the gain at 100 Hz, that is the base of the amplification
range
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Objectives Specifications Constraint Unit

Power Consumption minimize Watt
Total Width minimize µm2

Unity Gain Frequency maximize > 31.221 Mhz
Gain at 100 Hz maximize > 64.118 dB
Phase Margin maximize > 60 Degree

Unity Gain Frequency: It is defined as the frequency range where the amplifier has
at least the unity gain

Phase Margin: It is an indirect quality measure for the circuit because it is related to
the parasitics effects, like cross coupling, which causes the failure in the attainment
of the performances.

Circuit’s Area: This metric is related to the yield of the manufacturing process. When
the number of circuit per unit area increase then the yield of the manufacturing
process increase. In our case we used an underestimation given by the sum of the
MOS widths.

Power Consumption: It is today an important performance for all systems in which
the power is supplied by a battery.

3. Evolution strategies for scalar optimization

Usually, an evolution strategy is initialized with a population of random feasible enti-
ties individuals also named chromosomes which represent potential solutions to the given
optimization problem. These individuals are reproduced such that attributes from differ-
ent parents can be given to an offspring by recombination or cross-over operators. The
mutation operator can include random errors during reproduction. For each individual
is defined a fitness function which possibly depends on the environment. Each individual
of the offspring population is evaluated according to its fitness function such that only
better ones are selected as parents of the next generation, there is an elitist selection
when some of the better individual from the current generation are carried over to the
next generation unaltered. This process is iterated until a stopping criterion is fulfilled,
e.g. a maximum number of generations.

The i-th individual of generation t can be written as an n-dimensional vector ait with
components ait

1 , . . . ,ait
n representing an alternative as a point in Rn. Possibly additional

components ait
k , k > n, are used for storing control information of the evolutionary process

and they are called strategic components. The (µ+λ)-evolution strategy, where µ, λ ∈ N ,
starts with a population (t = 0) of µ feasible parents ai0 ∈ A which produce λ offspring.
During the reproduction, mutations occur as (0, σt)-normally distributed vector-valued
random variables zit ∈ Rn, such that offspring ait+1, i ∈ {1, . . . , λ} is calculated as:

(1) ait+1 = ajt + zit

for j ∈ {1, . . . , µ}.

For each offspring the fitness function f is evaluated. If a restriction g is violated the
fitness can be modified using a penalty function. Alternatively only feasible mutations
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ait+1 ∈ A are allowed. This is especially important for the comma-evolution strategy
(µ, λ)-ES with λ > µ where parents live one generation only. Here, possibly more than
λ offspring have to be generated to ensure a constant population size of µ feasible al-
ternatives.8 The µ best of the offspring become parents of the next generation in t + 1.
With the alternative (µ + λ)-evolution strategy, the live span of parents is not limited.
In the selection step, offspring and parents are considered such that parents can survive
several generations if they are fitter than their offspring. This also prevents a temporary
deterioration of population fitness.

The distribution parameter {σt = (σt
1, . . . , σ

t
n) ∈ Rn} for i ∈ {1, . . . , n}, for the mutations

can be interpreted as a step size vector analogously to deterministic search strategies.
Based on theoretical considerations, Rechenberg (1973) proposes a 1/5 success rule fur-
ther specified by Schwefel. This rule is based on an increase of the step sizes if on average
the portion of successful offspring (i.e. with increased fitness) is larger than 1/5. If the por-
tion is less than 1/5 the step sizes are decreased. This step size control does not support
direction-specific adaptations. It is only possible to prescribe constant scaling factors for
the co-ordinate directions because the σi remain in constant proportions (as long as they
do not reach a minimal value > 0). The 1/5 rule fails when there are no continuous partial
first derivatives of the objective function. Because of these problems, Schwefel8 proposes
another, more natural concept of step size control which allows an automatic scaling of
the variables: the step size parameters are themselves controlled evolutionarily by adding
n step size parameters to the n alternative parameters. Both types of entity parameters
are mutated by normally distributed random variables. The step sizes are then controlled
indirectly by the selection mechanism with an unchanged fitness function.

Schwefel also discusses some other mutation concepts which, for instance, allow a learn-
ing of search directions independently from the co-ordinate axes. Another important
mechanism in evolution strategies introduced by Schwefel is recombination. This simula-
tion of sexual reproduction is based on the idea that the genetic material of an offspring
does not come from a single parent but from two in nature. Schwefel proposes to choose
each component of an offspring vector randomly with an equal probability of 1/µ from
the parent population. Recombination can also be used for the control parameters of an
individual. Because of stability reasons intermediary recombination is proposed such that
the mean value of two parents is inherited to the offspring.

4. Evolutionary Algorithm MultiOb

Evolutionary Algorithm MultiOb was developed by Fraunhofer Institut Techno- und
Wirtschaftsmatematik (ITWM).2 This algorithm was modified in order to optimize inte-
grated circuit performances.

The bounded multiobjective problem, optimized by MultiOb, is expressed by this for-
malization:

(1) min
x∈H⊆Rn

f(x)

with fi : Rn ← Rq continuous functions. In this formulation, n is the number of param-
eters (decision variables), q is the number of objective functions, f is the vector-valued
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objective function, H is an hyperrectangle in the parameter space. The objective func-
tions can be also assumed to be Lipschitz continuous. Optimization is done according to
a black box concept: optimization algorithm takes no advantages of knowing an explicit
formulation of the objective functions. A technique from the family of robust metaheuris-
tics has been chosen, it supports the generation of (approximate) solutions according to
the Pareto dominance criterion.

The algorithm uses a number of parameters such as the population size (for parents
and offspring), the executed number of generations, and settings of the applied evolution-
ary operators such as an average step size for mutations, probability of recombinations
between solutions or probability of recombination between each component of solutions.
In general, the settings of these parameters influence the performance of the EA and the
computational effort. In brief, approximation quality improves with the population size
and the number of generations while the computation effort grows linearly with each of
these parameters.

The selection criterion chooses the individuals in accordance with the Pareto-
dominance.

Definition 4.1 (Pareto dominance). Given y′,y′′ ∈ Rn, y′ dominates y′′ if

(2) (∀1 ≤ i ≤ m : y′i ≤ y′′i ) ∧ (∃j : y′j < y′′j )

Algorithm 4.1 Pseudo code of MultiOb algorithm

Require: population size ,population offspring, generation number

1: Initialize a random population of population size individuals
2: Evaluate the objective functions on the population
3: for i← 0 to generation number do
4: Generate a population of dimension population offspring by mutation and recom-

bination operators
5: Evaluate the objective function on the new population
6: Select by Pareto Dominance criterion
7: Update the mutation rate
8: end for
9: Save results and make statistics

This kind of objective space optimization can lead to set of stable solutions in mul-
tiobjective sense.7 This characterization leads to a robust search and give back high
quality design. The algorithm also implements elitist strategies where good parents are
saved from selection. This strategies is used to improve the convergence. As a result, the
routine(s) will return sets of equivalent solutions according to the Pareto Relation, i.e.
approximations of the efficient set. Algorithm 4 shows the pseudocode of MultiOb.

5. Results

The MultiOb Algorithm was set with the configuration parameters showed in table 1.
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Evolutionary Parameter Value

Population size (parents) 1000
No. of offspring 500

No. of generations 5000
Mutation rate 0.1

Recombination rate 1 0.1
Recombination rate 2 0.25
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Fig. 1. Trade-off among Phase margin, Gain at 100 Hz and Unity Gain Frequency

The figures 1 and 2 show the trade-off among triples of objectives.
In figure 3 is showed the tradeoff between power consumption and unity gain frequency

from MultiOb sampling. Notice that a small set of representative points are selected by
the algorithm. These points have the highest dominance with respect the Pareto criterion
and they are stable in a multiobjective sense.7

6. Conclusion

In this case study a circuit design was carried out by multiobjective optimization.
Multiobjective characterization has located stable solutions. These solution can lead to
more quality design because quantifies tradeoffs for multiple competing goals in circuit
design. The plurality of design point can represent a set of alternatives useful for the
synthesis of electronic systems.
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Fig. 2. Trade-off among Power dissipation, Gain at 100 Hz and Unity Gain Frequecy
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Fig. 3. Trade-off between Power dissipation and Unity Gain Frequency
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