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Simple iterative ways to define Riemann surfaceh wrescribed number of sheets and given branchagxplicit equations are
shown. The analysis is then focused on a classi@h&hn surfaces analogue to IFS pre-fractals. Tiopiology (genus) and
monodromy are closed-form computed; the associaimilar symbolic dynamics is formalized anagnsoconvergence issues are
presented. They can be used as interesting parasfigomplexity and Chaos for some dynamical systenfhysics and Computer
Science which will be presented — with more mattieakdetails — in the full paper.

1. Riemann surfaces, Iterated Monodromy Groups and Julia sets

Riemann surfaces are usually defined as suBdets such that, let ®
R U R(w, 2 = 0; (1)
explicit definitions involve multi-valued function_ such that ~ induces abranchedcovering of %. Let
%® % be a -branched covering aniiV#(z) =0y, f"(2) be theforward orbit of any point 1 %; the

hierarchy treenaturally associatédo W#(z) has root , is connected andregular. If | % is the branch
points set then thgostcritical poins-set, ofFatou setis
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nl No
its complement is thefilled Julia setand i is theJulia set Loops of lift to automorphisms

of tree W#(z) . AutW¢(z) is isomorphic to the monodromy group of , i.e. theiterated monodromy group
of [3]:

—
MGT = MG FJ(f)< p,E”°\ U "B )= (3)
nT No [
2. Prefractal Riemann surfaces An initiator
Let T ,let 1 a monic polynomial with .+ ,..., | beits £ distinct roots with
multiplicites , ,..., respectively and leA be the Riemann surface defined by the explicit equation

wP - P(2 = 0, which is globally equivalent to the explicit, multivatequationw = f(z):

za 1= YR =90z " . )
j=1

By posingm; = m ccp(m, P andp = p; GCD(M;, p) = deeo(d, p):
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& Such a tree ha®V{'(x) as node-set and its incident nodes are consecutive points (@faitievard) orbit, i.e. belong to

- and , respectively;’ |
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t2)= O"f(z- 2)" == (4 - 27, )
j=1

T, and the following multi-indices in were used:
].r:(l,:LK,l) m = mlvaK ,m )1 m= mn}K m

m
= I 1K1 h _:_ __K r'
P = (P P2.K ., ) 0 g;i b,

A hasLcMp sheets, all sharing the same branch points, WhE:Ith@rroots of (and possibly) with
ramification indexep - 1, (d- 1) [5].
A relevant case is when and ( has simple roots onlyA is a -sheetechyperelliptic -
fold torus;¥ is a branch point iff is odd [4].
Let f(2) = (z- 2)¥(z 2(z 2% z £ z #( -z 9% -z )z the table below reports the action of
the monodromy group for and thus

_ A A KA. A, A m= (L112517, p = (63,2 3,616. Rows stand for one
O X \ 5 ; Lo j of the Lcmp = 6 sheets, columns for a loop’s monodromy
. \ ( \Z oA 1\\ ﬁ winding counter-clockwise aroundbranch points ( is not a
Ac A A A branch point since p o).

O \ \L& “ X ;& \ A L Monodromy group action 6,& A A2 A5 AT 4 is
. / X\Z ) J‘ ) \ shqwn taking a sample lodgg ™" with -

A 4 A A A " 1 , starting from ™ sheet and always ending on tH¥
O / ;\Z ;\\/ A ¢ ;\ one. Whether the winding order of the branch poin& is\

Y N NN oRN N N B N ,the corresponding visited
sheets’ sequenceiseithet T T T T or T T T 1
1, respectively, thus the monodromy grbup A must be abelian.
Any pathg ® A winding once [counter-]clockwise around( £ £ ) ends to the same point times

" mpmp.As |, isthe index-set of the sheets a monodromy aatimh: p; (As;) ® S, exists
such that

g2 &1 weAu= Am 0 gw= 0 @
A

(where ° T such that is the winding number gfaround ).

Direct sum (6) holds because whenegewinds times clockwise around" branch point the loop
cyclically “tunnels” down bym sheets (modulo ,,,), times. This just depends on not on the branch
points’ looping order. Ifystarts from the™ sheet{ 1 ewp) itendsonthé §g ™ sheet given by

md& " (s+ & XgLCMp )modicMp . (7)

3. Higher iteration orders: self-similarity

" let A 1 be the Riemann surface defined by tieself-composition of: it can be
recursively defined ovek . too, as
Arn = {Wo,Wo ) T 7 ) | Wy = f(wy 1} (8)
Definitions in (8) coincide with © , © | the implicit equation beingv} - P(w,. ;) = 0. Each and
every“ . -sheetof A . ramifies to the . -sheetSof A like the -sheets oA do from the

plane.
Each of the -sheets (*-generation sheets) has the same branch poihts ¥ of since
Other branch points are present dhigeneration sheets because (8) is multivalued, solutmns . ,

® The monodromy grougior a -sheeted Riemann surface is the subgroup ofyhemetric grous (of order & acting on
its fundamental group’s linear presentations.

¢ Hereinafter, the . -sheets will be referred to ab-generation shest



£ £ . Computing thglLcm p)" solutions of” is cumbersome, thougtf-generation branch poistare the
"_order preperiodic points of

Other different-generation branch points may coincileiacreases. Trivial case ishomogeneous (
and E ), then Mgeneration branch points include but, in genedah’t exhaust the - "-generation
ones.

More generally, branch points directly linking ™ with S.generation sheets, , may exist: then

_generation sheets will be also linked Bygeneration branch points, T : this phenomenon will be
named tascading.

If this occurs the cascading branch points will notréase in number but their ramification indexes
definitely will as O(p" k), whereas newer non-cascading branch points with iGatidn indexesp - 1,
turn up on every iterations.

As far as topology is concerned, non-cascadif n ) n, are homeomorphic to either a-fold

projective planeRP, or a -fold torus g4,, with the latter holding whenever is even and . The
following holds:
(temp)" - 1
=" = -2 +d-r+ 1.
K Comp 1 (Ip |- 2cmp +d- 1 + 1) 9)
This generalizes the hyperelliptic Riemann surface’'s on 82 for . in that caseLcmp = 2,

[p|-r=d,so(9) implies

4. Navigation on prefractal Riemann surfaces: Symbolic Dynamics

Uncascaded? ’s show aself-similar symbolic dynamics fogi . The iterated monodromy group
may be though as a continuous dynamical system ondtarbhy tree (representing sheet generations 8§1),
isomorphic to words reporting the sheets’ number conisetyvisited byg For itis an element of A
i.e. a finite word of alphabet ., ,, every symbol being a value 8f 8¢g “ each time branch cuts are
crossed, sincé (g(t)) = e SWOY[P (o)) .

"1 thealphabeti®)" ., andt A * 1 A . Eg,for

S8 Olav- 3" - 7
j=1

This accounts for different-generation sheetfor the "-generation.
Let be the connection matrix the of tH hierarchy tree, then [2]:

Ly p
Hor1 =Cph + :&Hn. (11)
is diagonal-block and accounts for different-generation sheet links.

I
~

f2(g(t)) = ez"ig"z"?ri/o

i=1

(10)

5. Convergence issues and Julia sets

The main issue is evaluatifg as ®¥ : 10$ converges only in  , which is strictly linked with !

and itsgrowth as a self-similar group [3]. The Julia set becomes an infinite-genus surface (whose branch-
cuts density is related to convergence) or a finite-genes but with a huge plenty of different topologies and
fractal geometries, depending on choices afnd . Algebraic relations between roots ofnfluence Julia sets,
cfr. Figs. 1,3,5. Fof(z) = §/Z 2 + 1) A has sheets and is homeomorphic tg, with g,= p(p" - 1)/2,

i.e. the number of links in the prefractal graph of Sierpinski -gon [2], i.e. 's hierarchy tree. Case
displays a ‘Cantor-set topology' (cfr. Fig. 2) aifg,)ni n= (2" - i n,. Rational functions can be
chosen instead of (cfr. Figs. 4,5).
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Figure 1. Gallery o2+ showing huge richness of Julia-set dynamics.
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Figure 2.3,-)/+4') )#1/5/6 A 6/+f(z) = J2(Z+ 1), ££7

e

Figure 3.2+ for f(z) = 34 Z + 1). Left to right:




Figure 4. Left to right, top to bottom: | |, 2+ v [, 2+

f(2) = I(z +21510)_(21+ 2)

Figure 5. 2+ for variousf(z) = §/N(2/ (2 (top: is 8 -definite).



