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FRACTAL RIEMANN SURFACES AND THEIR APPLICATIONS 
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Simple iterative ways to define Riemann surfaces with prescribed number of sheets and given branching via explicit equations are 
shown. The analysis is then focused on a class of Riemann surfaces analogue to IFS pre-fractals. Their topology (genus) and 
monodromy are closed-form computed; the associated self-similar symbolic dynamics is formalized and some convergence issues are 
presented. They can be used as interesting paradigm of complexity and Chaos for some dynamical systems in Physics and Computer 
Science which will be presented – with more mathematical details – in the full paper. 

1. Riemann surfaces, Iterated Monodromy Groups and Julia sets 

Riemann surfaces are usually defined as subsets RÍ � �  such that, let � �� � ® � , 
 �� �� �ÎR         Û         ( , ) 0R w z = ; (1) 

explicit definitions involve multi-valued function � � ��� � such that ��- �  induces a branched covering of �%. Let 
�� �%® �% be a � -branched covering and 
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hierarchy tree naturally associateda to sW ( )f z  has root �	� � �, is connected  and � -regular. If � Ì �% is the branch 
points set then the postcritical points-set, or Fatou set, is 
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its complement 
�� �� is the filled Julia set and �� ���� ¶
�� �� is the Julia set. Loops of 
�� �� lift to automorphisms 
of tree sW ( )f z . sW ( )Aut f z  is isomorphic to the monodromy group of 
�� ��, i.e. the iterated monodromy group 
of �  [3]: 
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2. Prefractal Riemann surfaces An initiator 

Let � Î ����� , let � Î � � � �� �  a monic polynomial with ��� � � � , � � ,� � ,…,� 	Î �  be its 	 £�  distinct roots with 
multiplicities 
 � ,
 � ,…,
 	 respectively and let A ���  be the Riemann surface defined by the explicit equation 

( ) 0pw P z- = , which is globally equivalent to the explicit, multivalued equation ( )w f z= : 
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By posing GCD( , )j j jm m pm=  and GCD GCD( , ) ( , )j jm p pp dp d= = : 

                                                        
*  E-mail address: arrighetti@die.uniroma1.it. 
a Such a tree has uW ( )f x as node-set and its incident nodes are consecutive points of the (backward) orbit, i.e. belong to 

�� - � ��- �� ��� �� �� and �� ��- � �� ��, respectively, " � Î � . 



 

 
1

( ) ( ) :: ( )j j

r

j r
j

f z z z zp m

=
= - = -Õ 1 z

m
p , (5) 

� �� � � �� � ��� � 	�Î � 	, and the following multi-indices in � 	 were used: 
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A ���  has LCM p  sheets, all sharing the same branch points, which are the roots �  of �  (and possibly ¥ ) with 
ramification indexes r- 1p  (d - 1)   [5]. 

A relevant case is when � ��  and 	 � � ��   (�  has simple roots only): A ���  is a � -sheeted hyperelliptic � � �� � -
fold torus; ¥  is a branch point iff �  is odd [4]. 

Let 2 3 4 5 76
6 1 2 3 4 5 7( ) ( ) ( )( ) ( ) ( ) ( ) ( )f z z z z z z z z z z z z z z z= - - - - - - - : the table below reports the action of 

the monodromy group for � �� , 	 ��  and � ����������������  thus 
(1,1,1,2, 5,1,7)=m , (6, 3,2, 3, 6,1, 6)=p . Rows stand for one 

of the LCM 6=p  sheets, columns for a loop’s monodromy 
winding counter-clockwise around �  branch points (� �  is not a 
branch point since � ��  �  p� �� ). 

Monodromy group action � 6Å� 3Å� 2Å2� 3Å5� 6Å7� 6 is 
shown taking a sample loop §§§§ � ¨̈¨¨  with � �� - ������	��� � � �	�  
" � � Î � , starting from � rd sheet and always ending on the � nd 
one. Whether the winding order of the branch points is Ð� � �Ñ� � �

Ñ� � �Ñ� � �Ñ� �   or  Ñ� � �Ñ� � �Ñ� � Ð� � Ñ� � , the corresponding visited 
sheets’ sequence is either  � Î � Î � Î � Î � Î �   or  � Î � Î � Î � Î 

� Î � , respectively, thus the monodromy groupb  ! A ���  must be abelian. 
Any path g��	���� ® �A ���  winding once [counter-]clockwise around � � (� £�£	 ) ends to the same point times 

�"#� m� p�m�� p��. As LCM� p  is the index-set of the sheets a monodromy action ( ) LCM1 ,1md : Sfp ®A p  exists 
such that 
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(where � º �� � �� � ��� � 	�Î � 	 such that � � is the winding number of g around � �). 
Direct sum (6) holds because whenever g winds � � times clockwise around �th branch point the loop 

cyclically “tunnels” down by m� sheets (modulo LCM� p ), � � times. This just depends on � , not on the branch 
points’ looping order. If g starts from the � th sheet (" �Î LCM� p ) it ends on the $� § g̈ th sheet given by 
 § ¨ § ¨( )LCM LCMmd modsg º + ×k m

p p p . (7) 

3. Higher iteration orders: self-similarity 

" � Î � 	  let A ��� ���� � �� �Î � � ��� � � ��� �� ��  be the Riemann surface defined by the � th self-composition of �: it can be 
recursively defined over A ��� - �  too, as 
 { }, 1 1( , ) ( )  ( )n

f n n n n nw w f w f w-
- -= Î ´ =A � � . (8) 

Definitions in (8) coincide with � 	 º � ,  � � º � , the implicit equation being 1( ) 0p
n nw P w -- = . Each and 

every “�� � - � �� �-sheet” of A ��� - �  ramifies to the �� � �� � - � �-sheetsc of A ���  like the �� � �� �-sheets of A ���  do from the �  
plane. 

Each of the �� � �� �-sheets (� st-generation sheets) has the same branch points� � Î � � �¥ �  of � since � � ��� ��� �. 
Other branch points are present on � th-generation sheets because (8) is multivalued, solutions to ��� � - � �� � �, 

                                                        
b The monodromy group for a � -sheeted Riemann surface is the subgroup of the symmetric group %�  (of order � &) acting on 

its fundamental group’s linear presentations. 
c Hereinafter, the �� � �� � - � �-sheets will be referred to as � th-generation sheets. 
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� £�£	 . Computing the LCM( )np  solutions of �- � �� �� is cumbersome, though � th-generation branch points are the 
� th-order preperiodic points of �. 

Other different-generation branch points may coincide as �  increases. Trivial case is �  homogeneous (� � �	  
and � � Œ� 
 � ), then � th-generation branch points include but, in general, don’t exhaust the �� - �� th-generation 
ones. 

More generally, branch points directly linking �� ��� th- with � st-generation sheets, � �� , may exist: then 
�� � � � th-generation sheets will be also linked by � th-generation branch points, " � Î � : this phenomenon will be 
named “cascading”. 

If this occurs the cascading branch points will not increase in number but their ramification indexes 
definitely will as ( )n k-O p , whereas newer non-cascading branch points with ramification indexes r- 1p  
turn up on every iterations. 

As far as topology is concerned, non-cascading ( )
0, INf n n ÎA are homeomorphic to either a � � -fold 

projective plane IRP nk or a � � -fold torus ,ng�  with the latter holding whenever � �  is even and � � � � � � �� �  . The 
following holds: 
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This generalizes the hyperelliptic Riemann surface’s one in §2 for � �� : in that case LCM 2=p , 
| | r d- =p , so (9) implies � � ��� � � �� �  . 

4. Navigation on prefractal Riemann surfaces: Symbolic Dynamics 

Uncascaded A ��� ’s show a self-similar symbolic dynamics for g Ì � 
�� ��. The iterated monodromy group � ! � 
may be though as a continuous dynamical system on its hierarchy tree (representing sheet generations §1), 
isomorphic to words reporting the sheets’ number consecutively visited by g. For � ��  it is an element of  ! A ��� , 
i.e. a finite word of alphabet LCM� p , every symbol being a value of $� § g���¨  each time branch cuts are 
crossed, since ( ) § ¨ ( )2 md ( )( ) ( )pi tf t e P tp gg g= . 

" � Î �  the alphabet is LCM
n� pò  and  ! A ��� ��� * � � ! A ��� .   E.g., for � �� : 
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This accounts for  different-generation sheets: � � for the �th-generation. 
Let � �  be the connection matrix the of the � th hierarchy tree, then [2]: 
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1n n nH C H+ = + Å
p

. (11) 

� � ��  is diagonal-block and � �  accounts for different-generation sheet links. 

5. Convergence issues and Julia sets 

The main issue is evaluating A ���  as � ®¥ : 10$� �� � �� � converges only in 
�� ��, which is strictly linked with � ! � 
and its growth as a self-similar group [3]. The Julia set 
�� �� becomes an infinite-genus surface (whose branch- 
cuts density is related to convergence) or a finite-genus one, but with a huge plenty of different  topologies and 
fractal geometries, depending on choices of �  and � . Algebraic relations between roots of �  influence Julia sets, 
cfr. Figs. 1,3,5. For( ) ( 1)p pf z z z= +  A ���  has � �  sheets and is homeomorphic to ,ng�  with ( 1) 2n

ng p p= - , 
i.e. the number of links in the prefractal graph of the Sierpinski � -gon [2], i.e. �’s hierarchy tree. Case � ��  
displays a ‘Cantor-set topology’ (cfr. Fig. 2) and .

0 0IN IN( ) (2 1)n
n n ng Î Î= -  Rational functions � � �  can be 

chosen instead of �  (cfr. Figs. 4,5). 
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Figure 1.  Gallery of 2+� � � �� � showing huge richness of Julia-set dynamics. 

 
 

 
 
Figure 2.  3,-)/+4'�)�)/#/1/�5�/6� A ��� �6/+� 2( 1)( ) z zf z += , � £� £�7 

 

 
Figure 3.  2+� � � �� � for 33( ) ( 1)f z z z= + . Left to right: � ������� . 

 



 

 
Figure 4.  Left to right, top to bottom: |���� �� �|,  2+� ���� �� �;    |���� �� �|,  2+� ���� �� �. 
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Figure 5.  2+� ���� �� � for various ( ) ( ) / ( )pf z N z D z=  (top: � is �8 -definite). 


