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Note on Dispersive Effects in Quantum Kinetic Equations
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In the paper [1] we presented a new strategy for the well-posedness analysis of quan-
tum kinetic problems that include a Hartree-type nonlinearity. There we focused on the
3-dimensional Wigner-Poisson-Fokker-Planck (WPFP) system, but we expect this new
approach to be suitable for a broad range of quantum kinetic problems.
In order to describe the non-reversible interaction of a quantum system with its envi-
ronment, a possible modification of the Wigner equation, [9], consists in introducing a
Fokker-Planck type operator on the right hand side, [7] e.g.:

(0.1) ∂tw + v · ∇xw − Θ[V ]w = βdivv(vw) + σ∆vw + 2γdivv(∇xw) + α∆xw

with w = w(x, v, t) Wigner function, V = V (x) potential, Θ[V ] pseudo-differential oper-
ator defined by

(Θ[V ]w)(x, v, t) =
i

(2π)3/2

∫

R3

δV (x, η)Fv→ηw(x, η, t)eiv·η dη

where δV (x, η) := V (x + η/2)−V (x− η/2) and Fv→ηw denotes the Fourier transform of
w with respect to v. β ≥ 0 is the friction parameter and the coefficients α, γ ≥ 0, σ > 0
constitute the phase-space diffusion matrix of the system. In the Fokker-Planck equation
of classical mechanics one would have α = γ = 0. For the WFP equation (0.1), the
so-called Lindblad condition guarantees that the evolution of the system is “quantum
mechanically correct” (i.e., it corresponds to a positive density matrix, [3]); however,
for the mathematical analysis, it suffices that (0.1) is parabolic or degenerate parabolic.
Thus, we shall only assume ασ ≥ γ2 henceforth.
We consider the case when V = V (x, t) models the mean-field interaction in the quantum
system: how to define rigorously the Hartree-potential in a quantum kinetic framework
is indeed one of the crucial points in the paper.
Definition 1 (Standard definition of mean-field quantities). To a Wigner

function w(t) is associated the position density n := n(x, t) :=
∫

w(x, v, t) dv, x ∈ R
3, t >

0, the potential V = V (x, t) := − 1
4π|x|

∗ n(x, t), which solves the Poisson equation

(0.2) −∆V (t) = n(t), x ∈ R
3, t > 0,

and the field E(x, t) := ∇xV (x, t). In classical kinetic theory the phase space density typ-
ically satisfies f(. , . , t) ∈ L1(R6) which yields a position density n(· , t) =

∫

f dv ∈ L1(R3).
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In quantum kinetic theory, however, the natural framework is w(. , . , t) ∈ L2(R6), which
makes Def. 1.1 meaningless. In order to establish well-posedness of the (WP or) WPFP
(0.1),(0.2) systems, two strategies have been used so far. The first possibility is to refor-
mulate the WP or WPFP systems either in terms of Schrödinger wave-function sequences,
[6], or in terms of density matrices, [3]. In such a framework, all physical quantities are
well-defined, in particular n(t) ∈ L1

+(R3) and the physical conservation laws for mass
and energy play a crucial role in the analysis for large time. Alternatively, one can keep
to the kinetic formulation and to kinetic tools, with the perspective of later tackling
boundary-value problems, which are more reasonable models for real simulations. The
literature related to the latter approach can be split into two groups: in several articles
([2], e.g.), a L2-setting is chosen for w(t), such that w(t) satisfies at least the necessary
condition to describe a quantum system, [9]. Then, v-weights are introduced in order
to enforce integrability in the v-variable, so to give sense to Def. 1.1. In other articles
([5], e.g.) instead, a L1-setting is chosen with the same motivation. However, in neither
of the two above approaches physical conservation laws can be exploited directly, since
both the mass and the kinetic energy are not positive functionals under the assumptions
made at the kinetic level.
A third aspect that differentiates quantum from classical kinetic theory, is the lack of
a maximum principle: ‖w(t)‖L2(R6) is the only conserved norm by the Wigner equation.
Due to the described differences, the analytic approach used for classical kinetic models
can not be adapted to quantum kinetic ones.

In order to achieve a global-in-time result for the WPFP system, in [2] we exploited
dispersive effects of the free-streaming operator jointly with the parabolic regularization
of the Fokker-Planck term, since this yields a-priori estimates for the solution w(t) in a
weighted L2-space. Such dispersive techniques for kinetic equations were first developed
for the VP system in [11]. In [2] these tools were extended to quantum kinetic theory.
In [1], we achieved as well a global-in-time well-posedness result for the WPFP system in
the space L2(R6), but without introducing weights. This is possible thanks to an alterna-
tive strategy that relies first of all on an a-priori estimate for the field ∇xV (t) in terms
of the ‖w(t)‖L2(R6) only. This estimate was derived in [2] using dispersive effects of the
free-streaming operator. It allow a novel definition of the macroscopic quantities, which,
in contrast to the Definition 1, is now non-local in time. This way, no v-integrability of
w is needed, and hence no moments in v either. Secondly, we shall use the (degenerate)
parabolic regularization of the Fokker-Planck term. These techniques allow to overcome
the described analytical difficulties and they yield –a-posteriori– some Lp-estimates on
the density.

In conclusion, our purely kinetic L2-analysis solves both main problems of quantum
kinetic theory, namely the definition of the density (due to the missing v-integrability of
w) and the lack of usable a-priori estimates on w (due to its non-definite sign). Finally,
we point out that we expect that this approach could also be a crucial step towards
developing a kinetic analysis for the Wigner-Poisson system, which has been an open
problem for 15 years.

Let us present the assumptions on the initial data w0 in order to quote the main result
of the paper [1]:

w0 ∈ L2(R6), ‖nϑ
0(t)‖Lθ(R3

x) ≤ CT t−ωθ , for some ωθ ≥ 0, ∀ t ∈ (0, T ] (A)
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where nϑ
0(x, t) :=

∫

w0(x− ϑ(t)v, v) dv, ϑ(t) := (1 − e−βt)/β . Observe that this is consis-
tent with Strichartz estimate for the (free) kinetic equation [8]

‖nϑ
0(t)‖Lθ(R3

x) ≤ Ct−ωS(θ)‖w0‖L1
x(Lθ

v), ∀ t ∈ (0, T ], ωS(θ) := 3(1 − 1/θ) .

Theorem 4.1 Let (A) hold for some θ ∈ Iθ and 0 ≤ ωθ < κ(θ). Then, there exists a
unique mild solution w ∈ C([0,∞); L2(R6)) of the WPFP problem.

A-posteriori, we obtain analogous regularity result to [4,10] for VPFP case:

Theorem 5.1 Under the same assumptions,w ∈ C((0,∞); C∞
B (R6)),

‖Dl
xD

m
v w(t)‖L2(R6) ≤ C

(

T, ‖w‖C([0,T ];L2(R6)) , Nθ

)

R(t)−
L

2 t−
M

2 , ∀ t ∈ (0, T ],

for all T > 0, and all multiindices l, m ∈ N
3
0, with |l| = L, |m| = M ∈ N0, where

R(t) = O(t), if α > 0, R(t) = O(t3), if α = 0 , σ > 0 (hypo-elliptic case). Moreover,
E, V, n ∈ C((0,∞); C∞

B (R3)), and for all T > 0:

‖Dl
xE(t)‖L2(R3) ≤ C

(

T, ‖w‖C([0,T ];L2(R6)) , Nθ

)

R(t)
3

2
( 1

2
− 1

θ
)−L−1

2 t−ωθ , ∀ t ∈ (0, T ].
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