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Abstract

The aim of this paper is to consider time-dependent variational and quasi-variational inequal-

ities and to study under which assumptions the continuity of solutions with respect to the time

can be ensured. Making on appropriate use of the set convergence in Mosco’s sense, we get the

desiderate continuity results for strongly monotone variational and quasi-variational inequali-

ties. The continuity results allow us to provide a discretization procedure for the calculation

of the solution to the variational inequality which expresses the time-dependent traffic network

equilibrium problem.
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1 Introduction

The paper presents results regarding continuity solutions to evolutionary variational
and quasi-variational inequalities, showing that the continuity results hold not only for
linear evolutionary variational and quasi-variational inequalities but also for nonlinear
evolutionary variational and quasi-variatio- nal inequalities.
These results reveal themselves very useful for the calculus to solutions to dynamic net-
work equilibrium problems, because they allow to apply a discretization procedure which
reduces the problem to the calculus of solutions to the finite variational inequality. More-
over, it is possible to solve other equilibrium problems, as for example the spatial equi-
librium problems with either quantity or price formulations and a variety of financial
equilibrium problems, because they have a similar formulation in terms of variational
inequalities.

2 The dynamic model

Let us recall the model of equilibrium flows in a dynamic traffic network. It is repre-
sented by a graph G = [N,L], where N is the set of nodes and L is the set of directed
links between the nodes. Let Rr be a path consisting of a sequence of links which connect
an Origin-Destination (O/D) pair of nodes. Let m be the number of the paths in the
network. Let W denote the set of the O/D pairs with typical O/D pair wj, |W| = l
and m > l. The set of paths connecting the O/D pair wj is represented by Rj and the
entire set of paths in the network by R. The topology of the network is described by the
pair-link incidence matrix Φ = (ϕj,r), where ϕj,r is 1 if path Rr ∈ Rj and 0 otherwise.
The flow vector is a time-dependent flow trajectory F : [0, T ] → R

m
+ , while the topology
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remains fixed. Let λ, µ ∈ L2([0, T ],Rm
+) be capacity constraints and let ρ ∈ L2([0, T ],Rm

+)
be the travel demand function. Let C : [0, T ] × R

m
+ → R

m
+ be the cost trajectory.

The vector-function H ∈ K, where

K =
{

F ∈ L2([0, T ],Rm
+) : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t), a.e. in [0, T ]

}

is a user traffic equilibrium flow if ∀wj ∈ W, ∀Rq, Rs ∈ Rj and a.e. in [0, T ] it results:

(2.1) Cq(t, H(t)) > Cs(t, H(t)) =⇒ Hq(t) = λq(t) or Hs(t) = µs(t).

Such a user traffic equilibrium flow is characterized by the following evolutionary varia-
tional inequality:

(2.2) 〈C(t, H(t)), F (t) −H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ].

Now, let us introduce the time-dependent elastic problem which arose whenever travel
demands are not only dependent on the time but also on the equilibrium distribution.
Let ρ : [0, T ] × R

m
+ → R

l
+, let D ⊆ L2([0, T ],Rm

+) be a nonempty, compact and convex

subset and let K : D → 2L2([0,T ],Rm

+
) be a set-valued mapping, defined by

K(H) =

{

F ∈ L2([0, T ],Rm
+) : λ(t) ≤ F (t) ≤ µ(t), a.e. in [0, T ],

ΦF (t) =
1

T

∫ T

0

ρ(t, H(τ))dτ a.e. in [0, T ]

}

.

Then the quasi-variational inequality that models the traffic equilibrium problem in the
elastic case is the following:

(2.3) 〈C(t, H(t)), F (t) −H(t)〉 ≥ 0, ∀F (t) ∈ K(t, H), a.e. in [0, T ].

3 Continuity results

In this section, we present results of continuity for solutions to evolutionary varia-
tional and quasi-variational inequalities associated to a linear operator, namely when
C(t, H(t)) = A(t)H(t) +B(t), and a nonlinear operator.
Theorem 3.1. ([1]) Let A ∈ C([0, T ],Rm×m

+ ) be a positive defined matrix-function

and let B ∈ C([0, T ],Rm
+) be a vector function. Suppose that λ, µ ∈ C([0, T ],Rm

+) and

ρ ∈ C([0, T ],Rl
+). Then, the linear evolutionary variational inequality admits a unique

solution H ∈ K such that H ∈ C([0, T ],Rm
+). Moreover, the estimate

‖H1 −H2‖C([0,T ],Rm

+
) ≤

1

ν
‖B1 −B2‖C([0,T ],Rm

+
)

holds, where ν is the constant of positive definition of matrix A(t), for each t ∈ [0, T ].
Moreover, if the cost operator C is nonlinear, strongly monotone, belongs to C([0, T ]×

R
m
+ ,R

m
+) and satisfies the following condition

‖C(t, F )‖m ≤ A(t)‖F (t)‖m +B(t), ∀F (t) ∈ K(t), a.e. in [0, T ],



DOI: 10.1685/CSC06014 3

with A,B ∈ C([0, T ],Rm
+), then the nonlinear evolutionary variational inequality (2.2)

has a unique solution which is continuous (see [2]).
Theorem 3.2. ([1]) Let A ∈ C([0, T ],Rm×m

+ ) be a positive definite matrix-function

and let B ∈ C([0, T ],Rm
+) be a vector function. Let λ, µ ∈ C([0, T ],Rm

+) be and let

ρ ∈ C([0, T ] × R
m
+ ,R

l
+) be such that

∃ψ ∈ L1([0, T ],Rm
+) : ‖ρ(t, F )‖l ≤ ψ(t) + ‖F‖2

m, ∀F ∈ R
m
+ ,

∃ν ∈ L2([0, T ],R+) : ‖ρ(t, F1) − ρ(t, F2)‖l ≤ ν(t)‖F1 − F2‖
2
m, ∀F1, F2 ∈ R

m
+ ,

a.e. in [0, T ]. Then, the quasi-variational inequality (2.3) admits a solution H ∈ K(H)
such that H ∈ C([0, T ],Rm

+).
This theorem holds for the solutions to nonlinear time-dependent quasi-variational in-

equalities if the nonlinear operator C belongs to C([0, T ] × R
m
+ ,R

m
+), and satisfies the

following conditions

∃γ ∈ L2([0, T ],R+) : ‖C(t, F )‖m ≤ γ(t) + ‖F‖m, ∀F ∈ R
m
+ , a.e. in [0, T ],

∃ν > 0 : 〈C(t, F ), F 〉 ≥ ν‖F‖2, ∀F ∈ R
m
+ , a.e. in [0, T ].

4 Approximation method

We consider the evolutionary variational inequality (2.2) and we suppose that the as-
sumptions above established are satisfied and hence the solution H ∈ C([0, T ],Rm

+). As
a consequence, (2.2) holds for each t ∈ [0, T ], namely

〈C(t, H(t)), F (t) −H(t)〉 ≥ 0, ∀t ∈ [0, T ].

We consider a partition of [0, T ], such that 0 = t0 < . . . < ti < . . . < tN = T . Then, for
each value ti, for i = 0, . . . , N , we apply the projection method for solving the variational
inequality

(4.1) 〈C(ti, H(ti)), F (ti) −H(ti)〉 ≥ 0, ∀F (ti) ∈ K(ti),

where

K(ti) =

{

F (ti) ∈ R
m
+ : λ(ti) ≤ F (ti) ≤ µ(ti), ΦF (ti) = ρ(ti)

}

.

The algorithm, starting from anyH0(ti) ∈ K(ti) fixed, iteratively updatesH(ti) according
to the formula

Hk+1(ti) = PK(ti)(H
k(ti) − αC(ti, H

k(ti))),

for k ∈ N, where PK(ti)(·) denotes the orthogonal projection map onto K(ti) and α
is a judiciously chosen positive steplength. If C is strongly monotone (with constant
ν) and Lipschitz continuous on K (with Lipschitz constant L), and if α ∈ (0, 2ν/L2),
the projection method determines a sequence {Hk(ti)}k∈N convergent to the solution to
(4.1). After iterative procedure, we can construct an approximated equilibrium solution
by linear interpolation.
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