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1 Modelling

1.1 The energy-transport model for semiconductors

For semiconductor devices smaller than 1µm thermal effects get significant influence.
The energy-transport (ET) model for semiconductors takes into account carrier heating.
We consider the ET-model for electrons coupled to the drift-diffusion (DD) model for
holes as minority carriers. The ET-model for electrons consists of conservation laws for
electron density n and energy density ǫ = 3

2
nT with electron temperature T . These

are coupled to Poisson’s equation for the electrostatic potential. With electron current
density Jn and energy current density Jǫ the scaled transient ET-model reads

λ2∆V = n− p− C(x),(1.1)

∂tn− div Jn = −R,(1.2)

∂tǫ− div Jǫ = −Jn∇V +W (n, T ) −
3

2
TR,(1.3)

where p denotes the hole density and R is the recombination term. λ designates the
scaled Debye-length and C(x) the doping profile of the device. For the energy-relaxation
term W (n, T ) we use the Fokker-Planck approximation

W = −
3

2

n(T − T0)

τ0
(1.4)

with lattice temperature T0 and energy relaxation time τ0. Under the assumption of
nondegenerated Boltzmann statistics and parabolic band structure the specifying current
relations are given in the DD-formulation

Jn = µn

(

∇n−
n

T
∇V

)

, Jǫ = µn

(

∇ǫ−
ǫ

T
∇V

)

.(1.5)

Here µn denotes the electron mobility. The DD-model for holes reads

∂tp+ div Jp = −R, Jp = −µp (∇p+ p∇V )(1.6)

with hole mobility µp. For recombination we use the Shockley-Read-Hall approximation.
The model is completed by initial and boundary values for n, p, V and T .
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1.2 Coupling to circuit equations

For modelling a semiconductor device as part of an electric circuit we couple the ET-
model with equations from modified nodal analysis (MNA), which consist of the Kirchhoff
current law and specifying current-voltage characteristics of resistors, capacitors and
inductors. The coupling between device and surrounding circuit happens through the
current leaving the device and the potential in the circuit nodes adjacent to the device.
The total current in the device consists of electron current, hole current and displacement
current

Jtot = Jn + Jp + Jdisp with Jdisp = −λ2 (∂tV )x .

We denote by jS the vector containing the current leaving all terminals except for one
reference terminal and introduce the semiconductor incidence matrix AS. Thus we get
the coupled system for an electric circuit containing a semiconductor device connected
to circuit nodes number i and j. It consists of the differetial-algebraic equation (DAE)
achieved by MNA where the semiconductor current has been added

1

t
AC

dq(AT
Ce)

dt
+ARg(A

T
Re) +ALiL +AV iV +ASjS = −AIis,

1

t

dΦ(iL)

dt
−AT

Le = 0,

AT
V e = vs,

with incidence matrices Aα and current in the corresponding branches iα. Charge, con-
ductivity and flux are denoted by q, g and Φ. Voltage sources and current sources are
denoted by vs and is. We add the equations describing the coupling via the semiconductor
current

jDS − λ2Vx = 0 and jS − β
[

Jn + Jp − ∂tj
D
S

]

x=0
= 0,

and the equations for the semiconductor model (1.1) - (1.6). β and t denote scaling
constants. The boundary conditions for the potential V read

V |x=0 = ei + Vbi|x=0 and V |x=1 = ej + Vbi|x=1,

where Vbi denotes the built-in potential of the device. Thus the complete system is
described by a partial differential-algebraic equation (PDAE). It will be completed by
boundary and initial conditions and has to be solved for e, iL, iV , n, ǫ, p, V .

2 Numerical discretisation

For numerical solution we firstly discretise in time by use of the 2 stage backward
difference formula BDF2. We consider the onedimensional model for the semiconductor
device with the partition 0 = x0 < x1 < ... < xN = 1 with Ii = (xi−1, xi) and h = xi−xi−1

for i = 1, ..., N . For space discretisation of Poisson’s equation we use a P1 finite element
scheme. For (1.2) and (1.3) after time discretisation we have to solve a boundary value
problem in each timestep of type

(2.1) −Jx + σg = f
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with g = µnn or g = µnǫ, respectively. For space discretisation we employ the mixed
hybrid finite element approach introduced by Marini and Pietra as it ensures current
continuity across interelement boundaries and positivity of the electron density. We
introduce the finite dimensional spaces:

Vh =
{

ψ ∈ L2(Ω) : ψ(x) = ai + biPi(x) in Ii, i = 1, ..., N
}

,

Wh =
{

φ ∈ L2(Ω) : φ is constant in Ii, i = 1, ..., N
}

,

Λh,ζ = {ξ is defined at the nodes x0, ...xN : ξ(x0) = ζ(0), ξ(xN ) = ζ(1)} ,

with a degree 2 polynomial Pi(x). With these we get for the approximation Jh for the
current, the piecewise constant approximation for the density gh and the approximation
for the density in the nodes gh the weak hybrid mixed formulation

Find Jh ∈ Vh, g
h ∈Wh, g

h ∈ Λh,gD
such that:

N
∑

i=1

(∫

Ii

KiJ
hψdx+

∫

Ii

Sig
hψxdx−

[

e−
V

T ghψ
]xi

xi−1

)

= 0,(2.2)

N
∑

i=1

(

−

∫

Ii

Jh
xφdx+

∫

Ii

σghφdx

)

−

N
∑

i=1

(
∫

Ii

fφdx

)

= 0,(2.3)

N
∑

i=1

(

[

ξJh
]xi

xi−1

)

= 0,(2.4)

for all ψ ∈ Vh, φ ∈Wh, ξ ∈ Λh,0, with Ki and Si as constant approximations for exp(−V
T

).
Equation (2.2) is the weak form of (1.5) after exponential fitting and (2.4) is the weak
formulation of the current continuity. This can be written as





A B̃T −C̃T

−B D 0
C 0 0









Jh

gh

gh



 =





0
F

0





with matrices A,B,C,D, which are (mixed) stiffness matrices to the spaces defined above.
A static condensation procedure can be employed to eliminate Jh and gh. This finally
leads to the system

(2.5) Mgh = G,

where M is a tridiagonal M-matrix. For the electron equation (1.2) G is positive for
adequate time step size. The eliminated variabes Jh and gh can be computed afterwards
from gh.

After time and space discretisation we solve the complete discretised system by a quasi
Newton-method.

As numerical example we will consider a simple test circuit containing a pn-diode.
We perform simulations for operational voltage with a frequency of 1GHz and 10GHz,
respectively. Furtheron the results will be compared to those achieved by usage of the
transient DD-model and the stationary ET-model.
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