ESOPO: an Environment for Solving Optimization Problems
Online

Marco D’Apuzzo
Department of Mathematics, Second University of Naples
via Vivaldi 43, 81100 Caserta, Italy
marco.dapuzzo@unina2.it

Maria Luisa De Cesare, Maria Rosaria Maddalena
Department of Mathematics and Applications, University of Naples “Federico II”
via Cintia, Complesso M.S. Angelo, 80126 Naples, Italy
{decesare,maddalen}@unina.it

Marina Marino
Department of Agricultural Engineering and Agronomy
University of Naples “Federico II”
via Università 100, 80055 Portici, Italy
mari@unina.it

In the last years many collaborative research efforts have been addressed to the design
and development of the so-called Problem Solving Environments (PSE), whose overall
aim is to provide the scientific communities with easy and friendly to use tools to solve a
class of problems [4]. To get this goal, the promotion of the development and evaluation
of reliable software that can be integrated in a common and standard computational
framework is of primary importance. The availability of such environments allows users
to access and use the software components. The current trend is to equip the environment
with suitable tools that allow users to access the available resources from any WEB
connection (see http://research.cs.vt.edu/pse/examples.html). PSEs involve both
developers, that make new algorithms and codes available to the end users, and software
infrastructure builders, that define standards and abstractions, and create interfaces.
Finally, PSEs provide an integrated computational environment for solving problems in
a particular domain, without the end user needing to be an expert in the technologies
used to effect the solution.

Within the outlined context, the aim of this paper is to present ESOPO (http://www.esopo.unina.it
an Environment for Solving Optimization Problems Online [2]. ESOPO is a collab-
orative research effort that aims to develop an homogeneous environment where dif-
ferent optimization codes, organized according to unifying criteria, can easy accessed
by users to solve their problems. The ESOPO project was born in the context of
an Italian research project (MIUR-FIRB Project Large Scale Nonlinear Optimization,
http://www.firb.lsono@unina.it), whose general aim is to develop methods, algorithms
and software for solving large scale nonlinear optimization problems arising in many appli-
cation fields. Following the successful NEOS Server design guidelines (see http://www-neos.mcs.anl.gov/
the basic goal of ESOPO is to provide Internet access to a library of optimization soft-
ware with user interfaces that make simple and intuitive the problem solving process.
Indeed, optimization codes developed by researchers working into the cited project have
been collected and integrated in a homogeneous computational environment. The inte-
gration process aims to abstract the users as much as possible from the optimization
software, and to provide a unified problem solving procedure, which has the same
aspect regardless of which solver the user is accessing. Each solver is equipped with
drivers for using the most common problem modeling languages, and with dynamic
graphical interfaces for its friendly usage. Furthermore, ESOPO has been equipped
with a large set of test problems from well-known collections (for instance, CUTEr -
http://cuter.rl.ac.uk/cuter-www/), with test problem generators produced by peo-
ple working in the project, and with up-to-date tools for software evaluation and com-
parison. Finally, ESOPO has been equipped with some well-established optimization software
packages, like Lancelot [1], KNITRO [5]. The complete list of these software is available
at the ESOPO home page.

At present, ESOPO is able to supply two main services. It allows to remotely solve
a problem, either submitted by the user observing one of the expected input formats,
or chosen from available collections. Meaningful results are automatically sent by an e-
mail message to the user. On the other hand, ESOPO supplies, when requested, profiles
of performance comparisons of a set of available solvers on a set of problems. The
performance profiles used by ESOPO are currently based on the performance metric
introduced by Dolan and Moré [3].

We first outline the basic hardware and software structure and the most important
functionalities of ESOPO. The ESOPO architecture model is very simple and can be
viewed as a three levels virtual machine. The outer level is a simple web connection
that allows users to access the ESOPO home page and to submit a job. The ESOPO
system consists of the server and the computing levels. The server is the kernel of
the ESOPO model and it represents the main user interface, providing all the tools
needed for job submission and execution. On the server, a set of application tools is
implemented, that permits users identification, solver selection and jobs scheduling as
well as job assignment to one of workstations that form the computing level, where the
solvers are located together with their drivers. Once the solver execution is terminated,
the workstation sends the results to the web server, which forwards them to the user by
an e-mail message.

We also discuss about the main issues related to the usage of ESOPO, to the develop-
ment of the services that it provides to the users and to the management of the available
optimization software.

Furthermore, we describe how to solve a problem with ESOPO. From the user point
of view, ESOPO allows users to access and use the available services by simple web
connections and tools. The solver selection process starts with the specification of the
main problem features (optimization process type, objective function type, constraints
type) using a web interface (solver selection). The next interface lists all codes able
to solve the specified problem. Then, users make their choice, and subsequent interfaces
(solver usage) allow to select the problem modeling language, to set some input parameter
values (for instance, tolerance values to be used into the stopping criteria), and to upload
the file containing the problem description. For each available solver there is a software
card containing information about the implemented optimization method as well as the
solver usage documentation.

Finally, a brief description of the performance evaluation tools currently available in
ESOPO is given.
We hope that ESOPO will be a reference point not only for the national activities concerning numerical optimization, and that it will benefit from contributions of all people working in the field of optimization software. We plan to add solvers for nonlinear optimization as well as in areas that are not currently covered. Work is currently aimed at improving the interaction between users and ESOPO, allowing, for example, to access job intermediate and final results online. Finally, we are adding other metrics to the performance evaluation tool, such as number of function evaluations and quality of the computed solution.

REFERENCES


