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One of the most important aspects of quantum theory is the derivation of simple approx-
imate models providing a hydrodynamic description of the transport of charged carriers.
Quantum drift-diffusion equations, e.g., are both subject of diverse mathematical studies
([4] and the Refs. therein) and used by engineers in many practical simulations. Our
aim is the derivation of a quantum drift-diffusion equation via the modified (compressed)
Chapman–Enskog method [3], as the preliminary step towards a rigorous asymptotic
analysis of the quantum transport equation, in case a strong external electric field and a
relaxation-time collisional operator are included. Therefore, the Wigner equation for the
quasi-distribution function w = w(x, v, t) is modified by a BGK operator, that indicates
relaxation in a time 1/ν to the equilibrium state weq. Precisely, the Wigner equation for
the quasi-distribution function w = w(x, v, t) is

∂w

∂t
+ v · ∇w − Θ[V ]w = −ν(w − weq) , (x, v) ∈ R

2d, t > 0,

where the potential V enters through the pseudo-differential operator Θ[V ] defined by

(Θ[V ]w)(x, v, t) =
i

(2π)d/2

∫

Rd

δV (x, η)Fw(x, η, t)eiv·η dη ,

with δV (x, η) := 1
~

(

V (x+ ~η
2m

) − V (x− ~η
2m

)
)

and Ff(η), which denotes the Fourier
transform of w from the variable v to the variable η. We can introduce a small param-
eter ǫ related to the mean free path, which refers to the relaxation to thermodynamical
equilibrium and to the presence of a strong field. Accordingly, in dimensionless form

(0.1)
∂w

∂t
+ v · ∇w −

1

ǫ
Θ[V ]w = −

w − weq

ǫ
, (x, v) ∈ R

2d, t > 0.

We shall describe the equilibrium state by the O(~2)-quantum corrected thermodynamical
equilibrium function calculated by Wigner in [6] (cf. [2] for an updated discussion).
Precisely, we can write the Wigner thermal equilibrium function as

weq(x, v) =n(x, t)
(

F (v) + ~
2F (2)(x, v)

)

+O(~4) , F (v) :=

(

βm

2π

)d/2

e−βmv2/2,

F (2)(x, v) :=F (v)

[

−
β2

24m

d
∑

r=1

∂2V

∂x2
r

+
β3

24

d
∑

r,s=1

vrvs
∂2V

∂xrxs

]

,
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where n(x, t) = n[w](x, t) :=
∫

w(x, v, t) dv is the position density, β ≡ 1/kT , T is the
(constant) temperature and k is the Boltzmann constant (cf. [1]).
We shall consider the Hilbert space Xk = L2(R2d, (1 + |v|2k)dx dv; R) and write (0.1) in
the abstract form

(0.2) ǫ
dw

dt
= ǫ Sw + Aw + Cw, lim

t→0+
‖w(t) − w0‖Xk

= 0

with
Aw := Θ[V ]w, Cw := −(w − Øw) , Ωw = n(F + ~

2F (2))

and the free-streaming operator Su = −v· ∇, D(S) = {u ∈ Xk |S u ∈ Xk} .
The main ingredient of the compressed Chapman-Enskog expansion, as proposed in [3],

is the study of the problem (0.2) with ǫ = 0, i.e. of the equation (A + C)f = 0 in the
space Xk. We can state that, for any fixed x ∈ R

d

ker(A + C) := {cM(v), c ∈ R} ⊂ Xv
k := L2(Rd, (1 + |v|2k)dv; R)

with

(0.3) M(x, v) = F−1

{

FF (η)

1 − iδV (x, η)

(

1 −
β2

~
2

24m

d
∑

r,s=1

ηrηs
∂2V (x)

∂xsxs

)}

(x, v).

Moreover, for all h ∈ Xv
k , (A + C)u = h has a solution if and only if

∫

h(v) dv = 0 .
According to the previous considerations, we can decompose the space Xk as

Xk = (Xk)M ⊕ (Xk)
0

where (Xk)M is the eigenspace spanned by M and

(Xk)
0 =

{

f ∈ Xk

∣

∣

∣

∣

∫

f(v) dv = 0

}

.

Let P be the corresponding spectral projection from (Xk) into (Xk)M , defined by Pf =
M
∫

f(v) dv and Q = I − P. Accordingly, we decompose the unknown function w ∈ Xk

as w = ϕ+ ψ = Pw + Qw, where ϕ is called the hydrodynamic part and ψ is called the
kinetic part of w. Observe that for all w ∈ Xk,Pw = Mn[w].
Operating formally on both sides of Eq. (0.2 with the projections P and Q, we obtain
the following system











∂ϕ

∂t
= PSPϕ+ PSQψ

∂ψ

∂t
= QSPϕ+ QSQψ + 1

ǫ
Q(A + C)Qψ

with initial conditions

ϕ(0) = ϕ0 = Pf0 , ψ(0) = ψ0 = Qf0.

The compressed asymptotic expansion consists in splitting the unknown functions ϕ and
ψ into the sum of the “bulk” parts ϕ̄ and ψ̄ and of the initial layer parts ϕ̃ and ψ̃, which
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take account of the rapid changes of f for small times t = t
ǫ
. Then the bulk hydrodynamic

part ϕ̄ is left unexpanded and the other parts are expanded in series of ǫ. By disregarding
terms of order ǫ2, we recover the following equation for the unexpanded function ϕ̄(x, v, t)

(0.4)
∂ϕ̄

∂t
= PSPϕ̄− ǫPSQ(Q(A + C)Q)−1QSPϕ̄ .

ϕ̄(x, v, t) can still be written as the product ϕ̄(x, v, t) = M(x, v) n(x, t), since we shall
consider the contribution of the initial layer part ϕ̃ via an appropriate initial condition.
After some algebra manipulations, we write Eq. (0.4) in the following form

∂n

∂t
= −∇·

(

n

∫

vMdv

)

− ǫ∇·

[(
∫

v ⊗D2 dv

)

∇n+ n

∫

vD1 dv

]

(0.5)

where D2 and D1 are esplicitly determined by solving appropriate equations containing
the operator Q(A + C)Q. We remark that the solution of Eq. (0.5) is the correction up
to order ǫ2 of the solution n of the continuity equation, in case of strong field.
We can calculate the coefficient in the operator PSP defined above

(0.6)

∫

vM(x, v)dv = −∇V (x) ,

the diffusion tensor D

D :=

∫

v ⊗D2 dv =
I

β
+ ∇V ⊗∇V −

β~
2

12m
(∇⊗∇)V + O(~4) ,

with I identity tensor, and

∫

vD1(x, v)dv = (∇⊗∇)V ∇V −
β~

2

12m
∇· (∇⊗∇)V +O(~4) .

Finally, Eq. (0.5) looks like

∂n

∂t
−∇· (n∇V ) −

ǫ

β
∆n− ǫ∇· (∇V ⊗∇V ∇n)

−ǫ∇· [n (∇⊗∇)V ∇V ] +
ǫβ~

2

12m
∇· [(∇⊗∇)V ∇n + n∇· (∇⊗∇)V ] = 0

and we can recognize the drift and the diffusion terms, two terms due to the strong
field assumption (cf. [5]) and the terms due to the (quantum) Bohm potential (cf. [1]).
We shall give a rigorous proof of the results up to now formally derived. In particular,
we study the well-posedness for the initial parts of our problem. We shall also prove
regularity of the solution of the drift-diffusion equation, starting from sufficiently smooth
initial value. Finally we can prove that the asymptotic expansion up to the first order
gives an approximation of order ǫ2 to the solution of the exact problem.
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