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One of the most important aspects of quantum theory is the derivation of simple approx-
imate models providing a hydrodynamic description of the transport of charged carriers.
Quantum drift-diffusion equations, e.g., are both subject of diverse mathematical studies
([4] and the Refs. therein) and used by engineers in many practical simulations. Our
aim is the derivation of a quantum drift-diffusion equation via the modified (compressed)
Chapman—Enskog method [3], as the preliminary step towards a rigorous asymptotic
analysis of the quantum transport equation, in case a strong external electric field and a
relaxation-time collisional operator are included. Therefore, the Wigner equation for the
quasi-distribution function w = w(x,v,t) is modified by a BGK operator, that indicates
relaxation in a time 1/v to the equilibrium state weq. Precisely, the Wigner equation for
the quasi-distribution function w = w(z,v,t) is

ow

En +v-Vw—-0[Vjw = —v(w—1wy), (z,v)€R*™ >0,

where the potential V' enters through the pseudo-differential operator ©[V] defined by
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OWVIu)(r.v.1) = G [ V(@) Fulen. e dy.

with 0V (z,n) = 3 (V(z+ QFL—T:’L) —V(z — %)) and Ff(n), which denotes the Fourier
transform of w from the variable v to the variable n. We can introduce a small param-
eter € related to the mean free path, which refers to the relaxation to thermodynamical
equilibrium and to the presence of a strong field. Accordingly, in dimensionless form

ow _
(0.1) E—HJ Vw — —@[V] = —w, (z,v) € R* > 0.

€

We shall describe the equilibrium state by the O(h?)-quantum corrected thermodynamical
equilibrium function calculated by Wigner in [6] (cf. [2] for an updated discussion).
Precisely, we can write the Wigner thermal equilibrium function as
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where n(z,t) = n[w|(x,t) := [w(z,v,t)dv is the position density, 5 = 1/kT, T is the
(constant) temperature and k is the Boltzmann constant (cf. [1]).
We shall consider the Hilbert space Xy = L*(R? (1 + |v|*!)dx dv;R) and write (0.1) in
the abstract form
(0.2) W S+ Aw+C lim_ [[w(t) — wox, = 0

. —_— = 1m — fry

€ It €SW w w, L w Woll X,
with
Aw = 0[V]w, Cw:=—(w—Quw), Qw=n(F+hF?)

and the free-streaming operator Su = —v-V, D(S) = {u € X | Su € X;}.

The main ingredient of the compressed Chapman-Enskog expansion, as proposed in [3],

is the study of the problem (0.2) with € = 0, i.e. of the equation (A4 C)f = 0 in the
space Xj. We can state that, for any fixed z € R?

ker(A+C) := {cM(v),c € R} C X} = L*(R? (1 + |v|**)dv; R)

with
L FF(y) PR G PV (a)
0.3)  Mz,v)=F 1 22U [y Tls ).
(0.3) (v,0) = F {1_2.5‘/(%77) ( i Tgln O vy (z,v)
Moreover, for all h € X}, (A+ C)u = h has a solution if and only if [h(v)dv = 0.

According to the previous considerations, we can decompose the space Xj as
Xi = (Xi) y @ (Xg)"

where (X}),, is the eigenspace spanned by M and

/f('u)dv:O}.

Let P be the corresponding spectral projection from (Xj) into (Xj),,, defined by Pf =
M [ f(v)dv and Q =7 — P. Accordingly, we decompose the unknown function w € Xy,
as w = @ + 1 = Pw + Quw, where ¢ is called the hydrodynamic part and v is called the
kinetic part of w. Observe that for all w € Xy, Pw = Mn[w].

Operating formally on both sides of Eq. (0.2 with the projections P and Q, we obtain
the following system

) = {1 e X,

%—f — PSPy + PSQY
O~ QSPy+ Q50U+ QA+ C)QY

with initial conditions

©(0) =9o="Pfo, ¥(0)=1y=Qf.

The compressed asymptotic expansion consists in splitting the unknown functions ¢ and
1 into the sum of the “bulk” parts ¢ and 1 and of the initial layer parts ¢ and 1, which
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take account of the rapid changes of f for small times t = E Then the bulk hydrodynamic
part @ is left unexpanded and the other parts are expanded in series of €. By disregarding
terms of order €2, we recover the following equation for the unexpanded function @(z, v, t)
05

(0.4) a—‘f — PSPp — ePSQ(Q(A+C)Q) ' QSPg.

o(x,v,t) can still be written as the product @(z,v,t) = M(x,v) n(z,t), since we shall
consider the contribution of the initial layer part ¢ via an appropriate initial condition.
After some algebra manipulations, we write Eq. (0.4) in the following form

38—7; __v. (n /dev)
(0.5) v K/v © Dy dv> Vi + n/'UD1 dv]

where Dy and D; are esplicitly determined by solving appropriate equations containing
the operator Q(A + C)Q. We remark that the solution of Eq. (0.5) is the correction up
to order €2 of the solution n of the continuity equation, in case of strong field.

We can calculate the coefficient in the operator PSP defined above

(0.6) / oMz, 0)do = —VV(z),
the diffusion tensor D
D = /U®D2dv: Z—I—VV@VV— i (Ve V)V +O0(RY),
I} 12m
with Z identity tensor, and
ph

V- (Vo V)V +0(hY).

/UD1($,’U)d’U = (Ve V)V VV — .

Finally, Eq. (0.5) looks like

)
8—7; V- (nVV) — %An — V- (VV @ VV Vn)
eBh?
—~eV-[n (V@ V)V VV]+ =V [(VO V)V Vn+n V- (V& V)V] =0

and we can recognize the drift and the diffusion terms, two terms due to the strong
field assumption (cf. [5]) and the terms due to the (quantum) Bohm potential (cf. [1]).
We shall give a rigorous proof of the results up to now formally derived. In particular,
we study the well-posedness for the initial parts of our problem. We shall also prove
regularity of the solution of the drift-diffusion equation, starting from sufficiently smooth
initial value. Finally we can prove that the asymptotic expansion up to the first order
gives an approximation of order €? to the solution of the exact problem.
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