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INTRODUCTION 

In this paper we address the problem of producing an enlarged picture from a given digital image 

(zooming). This problem arises frequently whenever an user wishes to zoom in to get a better view of a 

given picture. There are several issues to take into account about zooming: unavoidable smoothing 

effects, reconstruction of high frequencies details without the introduction of artifacts and 

computational efficiency both in time and in memory requirements. 

As input, a generic zooming algorithm takes a RGB picture and, as output, provides a picture of 

double size preserving as much as possible the information content of the original image. For a large 

class of zooming techniques, this is achieved by mean of some kind of interpolation: replication, 

bilinear and bicubic are the most popular choices and they are routinely implemented in commercial 

digital image processing software.  

In this paper, we use interpolation methods like ENO [1] and WENO [1, 2, 3, 4, 5] techniques, 

generally used to solve hyperbolic PDEs, for the zooming process of digital images. The key idea lies 

at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the 

locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as 

much as possible. The algorithms work on monochromatic images, but they are easily adapted to zoom 

RGB color pictures. 

 Our experiments show that the proposed methods beat in quality pixel replication, bilinear and 

bicubic interpolation, and LAZA (Locally Adaptive Zooming Algorithm) [6]. Moreover our algorithm 

is competitive both for quality and efficiency with the other traditional techniques of zooming. 

 
1. THE BASIC ALGORITHM 
 

In this section, we give a description of proposed algorithm in the case of gray scale picture. 

The first step expands the source n × n pixels image into a regular grid of size (2n – 1) × (2n – 1) (see 

Fig. 1). More precisely, if S(i,j) denotes the pixel in the i-th row and j-th column of the source image, 



 

 

and Z(l,k) denotes the pixel in the l-th row and k-th column in the zoomed picture, the expansion is 

described as a mapping E:S  Z according to the equation: 

E(S(i,j))=Z(2i-1,2j-1) 

 

 
 

            
    Fig 1: The first step of zooming (expansion)        Fig. 2: Pixels’ Labels                    Fig. 3: Description of the algorithm 

 
 

The mapping E leaves undefined the value of all the pixels in Z with at least one even coordinate 

(white dots in Fig. 1). 

In the second step, we apply the selected ENO or WENO technique, to the rows of odd index in 

Z, to compute the value of all pixels (i.e. 1H  and 2H  in Fig. 2). 

Then we apply the same technique, to all the columns in Z, to compute the value of all pixels (i.e. 

1V , X and 2V  in Fig. 2).    

 

2. ZOOMING COLOR PICTURES 

The basic algorithm described above for gray scale pictures can be easily generalized to the case 

of RGB color images. In this case, we take advantage of the higher sensitivity of human visual system 

to luminance variations in comparison with the sensitivity to crominance values. Hence, we allocate 

higher computational resources to zoom luminance values, while crominance values may be processed 

with a simpler and more economical approach. Accordingly, we propose to operate as follows: 

• Translate the original RGB picture I into the YUV color model. 

• Zoom the luminance values Y according with the basic algorithm described in section 1. 

• Zoom the U and V values using just a simple pixel replication algorithm. 

• Back translate the zoomed picture into a RGB image. 

The results obtained with this basic approach are qualitatively comparable with the results 

obtained using bicubic interpolation over the three color channels. 

 



 

 

 

 

3. EXPERIMENTAL RESULTS 

 In our experimental context, we have first collected a test pool of 100 gray scale pictures. For 

each image I in  this set we have performed the following operations: 

• reduction  by decimation: a new picture dI  of half size of I is obtained taking only the 

pixels with both odd coordinates of the original picture; 

• starting from dI , we have obtained the zoomed image; 

• calculation of the following quantitative measurements between the original picture and the 

reconstructed picture: PSNR, cross correlation coefficient and error threshold; 

• calculation of the cpu-time; 

• qualitative evaluation of the 

zoomed image. 

 

 

 

CROSS-CORRELATION 
COEFFICIENT 

CPU-TIME PSNR 

WENO 3° ORDER 0,9902 1,08 30,94 
WENO 5° ORDER 0,9924 1,50 32,11 
WENO 7° ORDER 0,9936 1,86 32,73 
WENO7-2D 0,9946 2,10 33,47 
OWENO1-2D 0,9947 2,14 33,58 
RUSSO FERRETTI 2°-3° ORDER 0,9953 1,56 34,06 
RUSSO FERRETTI 3°-5° ORDER 0,9957 1,95 34,34 
BRYSON LEVY 0,9956 1,46 34,33 
LAZA 0,9950 12,99 33,58 

REPLICATION 0,9871 0,05 29,32 

SPLINE 0,9955 0,75 34,27 

BILINEAR 0,9953 0,42 33,95 

BICUBIC 0,9957 1,01 34,36 

CPU-
TIME 

CROSS-
CORRELATION 
COEFFICIENT 

PSNR 

ENO 2° ORDER 5,23 0,9858 29,42 
ENO 3° ORDER 15,72 0,9847 29,06 
ENO 4° ORDER 34,38 0,9826 28,44 
ENO 5° ORDER 71,58 0,9852 23,35 
ENO3-INCROCI 15,18 0,9898 30,83 
LAZA 12,75 0,9946 33,58 
REPLICATION 0,07 0,9854 29,32 
SPLINE 0,93 0,9952 34,27 
BILINEAR 0,43 0,9950 33,95 
BICUBIC 1,05 0,9953 34,36 
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WENO 7°
ORDER

65,45 47,37 36,99 30,04 24,90 21,31

LAZA 57,72 42,38 33,28 26,88 22,15 18,54

REPLICATION 64,03 52,29 43,95 37,65 32,61 28,54

BICUBIC 62,87 44,68 34,48 27,61 22,67 18,83
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53,50 40,34 32,03 26,04 21,57 18,07
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3-5 ORDER

63,02 45,14 34,81 27,92 22,83 19,05
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LAZA 57,72 42,38 33,28 26,88 22,15 18,54

REPLICATION 64,03 52,29 43,95 37,65 32,61 28,54

BICUBIC 62,87 44,68 34,48 27,61 22,67 18,83
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                 (a)                        (b)     (c)  

Fig. 4: Examples of zoomed pictures with the Bryson-Levy (b) and Russo-Ferretti (c) based methods. 

 

4.  CONCLUSIONS 



 

 

In this paper a new technique for zooming a digital picture has been proposed. It is based on the 

ENO and WENO interpolation techniques. We have obtained competitive results using the RUSSO-

FERRETTI [4] and BRYSON-LEVY [3] version of them.  
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