Communications to SIMAI Congress, DOI: 10.1685/CSC06136
ISSN 1827-9015, Vol. 1 (2006)

ENO/WENO Interpolation methodsfor the
ZOOMING of digital images

R. M. PIDATELLA, F.STANCO, C. SANTAERA
Dipartimento di Matematica ed Informatica - Univigasdi Catania
Viale A. Doria 6 - 95125 Catania, Italy

INTRODUCTION

In this paper we address the problem of producmgrdarged picture from a given digital image
(zooming). This problem arises frequently wheneareuser wishes to zoom in to get a better view of a
given picture. There are several issues to take agtount about zooming: unavoidable smoothing
effects, reconstruction of high frequencies detadghout the introduction of artifacts and
computational efficiency both in time and in memuogguirements.

As input, a generic zooming algorithm takes a RGBupe and, as output, provides a picture of
double size preserving as much as possible thennafiion content of the original image. For a large
class of zooming techniques, this is achieved byammef some kind of interpolation: replication,
bilinear and bicubic are the most popular choices they are routinely implemented in commercial
digital image processing software.

In this paper, we use interpolation methods likeCEN] and WENO [1, 2, 3, 4, 5] techniques,
generally used to solve hyperbolic PDEs, for thenzing process of digital images. The key idea lies
at the approximation level, where a nonlinear aslagtrocedure is used to automatically choose the
locally smoothest stencil, hence avoiding crosdiiggontinuities in the interpolation procedure as
much as possible. The algorithms work on monochtiznraages, but they are easily adapted to zoom
RGB color pictures.

Our experiments show that the proposed methodsibepality pixel replication, bilinear and
bicubic interpolation, and LAZA (Locally Adaptiveodming Algorithm) [6]. Moreover our algorithm

is competitive both for quality and efficiency wititie other traditional techniques of zooming.

1. THEBASIC ALGORITHM

In this section, we give a description of propoakgbrithm in the case of gray scale picture.
The first step expands the source n pixels image into a regular grid of sizen(2 1)x (2n — 1)(see

Fig. 1). More precisely, i6(i,j) denotes the pixel in the i-th row and j-th colunfrttee source image,
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and Z(l,k) denotes the pixel in the I-th row and k-th columnthe zoomed picture, the expansion is
described as a mappilkgS — Z according to the equation:
E(S(i.1))=2(2i-1,2j-1)
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Fig 1: The first step of zooming (expansion) Fig. 2: Pixels’ Labels Fig. 3: Description of the algorithm

The mapping E leaves undefined the value of alpikels in Z with at least one even coordinate
(white dots in Fig. 1).

In the second step, we apply the selected ENO oN@/Eechnigue, to the rows of odd index in
Z, to compute the value of all pixels (i.E., and H, in Fig. 2).

Then we apply the same technique, to all the cotumiZ, to compute the value of all pixels (i.e.
V,, X andV, in Fig. 2).

2. ZOOMING COLOR PICTURES

The basic algorithm described above for gray spa@leires can be easily generalized to the case
of RGB color images. In this case, we take advanti#ghe higher sensitivity of human visual system
to luminance variations in comparison with the #esity to crominance values. Hence, we allocate
higher computational resources to zoom luminandgega while crominance values may be processed
with a simpler and more economical approach. Adogiy, we propose to operate as follows:

. Translate the original RGB picture | into the YUWlar model.

. Zoom the luminance values Y according with the dagjorithm described in section 1.

. Zoom the U and V values using just a simple pigglication algorithm.

. Back translate the zoomed picture into a RGB image.

The results obtained with this basic approach aralitatively comparable with the results
obtained using bicubic interpolation over the threlr channels.



3. EXPERIMENTAL RESULTS

In our experimental context, we have first colsecta test pool of 100 gray scale pictures. For

each imagé in this set we have performed the following ofieres:
. reduction by decimation: a new pictutg of half size ofl is obtained taking only the
pixels with both odd coordinates of the originaitpre;
. starting froml ;, we have obtained the zoomed image;
. calculation of the following quantitative measurensebetween the original picture and the
reconstructed picture: PSNR, cross correlationfaeft and error threshold;

. calculation of the cpu-time;

itati i CROSS-CORRELATION CPU-TIME| PSNR
. gualitative evaluation of th¢ COEFRICIENT

WENO 3° ORDER 0,9902 1,08 30,94

CPU- CROSS- PSNR | |WENO 5° ORDER 0,9924 1,50 32,11

TIME CORRELATION WENO 7° ORDER 0,9936 1,86 32,73

COEFFICIENT WENO7-2D 0,9946 2,10 3347

ENO 2° ORDER | 523 0,9358 2942 OWENOL2D 0.9947 214 3358

ENO 3° ORDER | 1572 0,9847 29,06 RUSSO FERRETTI 2°-3° ORDE 0,9953 1,56 34,06

ENO 4° ORDER | 34,38 0,9826 28,44 RUSSO FERRETTI 3°-5° ORDE 0,9957 1,9 34,34

ENO 5° ORDER | 71,58 0,9852 23,35 BRYSON LEVY 0,9956 1,46 34,33

ENO3-INCROCI 15,18 0,9898 30,83 LAZA 0,9950 12,99 33,58
LAZA 1275 0,9946 33,58

REPLICATION 507 0,505 203 REPLICATION 0,9871 0,05 29,32

=T 093 0.9952 .27 SPLINE 0,9955 0,75 34,27

BILINEAR 0,43 0,9950 33,95 BILINEAR 0,9953 0,42 33,95

BICUBIC 1,05 0,9953 34,36 BICUBIC 0,9957 1,00 34,36

zoomed image.
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[slli—\\/ENO 5° 54,93 | 42,09 | 33,76 | 27,85 | 23,30 | 19,80 ——@— RUSSO FERRETT! | 5350 2034 32,03 26,04 2157 1807
ORDER 2-3 ORDER
WENO 7° 65,45 | 47,37 | 36,99 | 30,04 | 24,90 | 21,31 M RUSSO FERRETTI | 63,02 45,14 | 3481 | 27,92 | 2283 19,05
ORDER 3.5 ORDER
LAZA 57,72 | 42,38 | 33,28 | 26,88 | 22,15 | 18,54 BRYSON LEVY 52,10 | 38,77 | 30,52 | 24,68 | 20,37 17,04
|elifmm REPL ICATION | 64,03 | 52,29 | 4395 | 37,65 | 32,61 | 28,54 LAZA 57,72 | 42,38 | 3328 | 26,88 | 22,15 | 1854
(e 3| CUBIC 62,87 | 44,68 | 34,48 | 27,61 | 22,67 | 18,83 ——3¥—— REPLICATION 64,03 52,29 43,95 37,65 32,61 28,54
errore treshold BICUBIC 62,87 44,68 34,48 27,61 2267 18,83
error treshold

Fig. 4: Examples of zoomed pictures with the Bryson-Levar{th Russo-Ferretti (c) based methods.

4. CONCLUSIONS



In this paper a new technique for zooming a digiialure has been proposed. It is based on the

ENO and WENO interpolation technigues. We have inbthcompetitive results using the RUSSO-
FERRETTI [4] and BRYSON-LEVY [3] version of them.
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