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Abstract.

In this paper we extend the Trajectory Piecewise Linear (TPWL) model order reduction

(MOR) method for nonlinear differential algebraic equations (DAE). The TPWL method is

based on combining several linear reduced models at different time points, which are created

along a typical trajectory, to approximate the fully nonlinear model.

We discuss how error control is used to select the linearisation tuples for linearisation, the choice

of the linear MOR method and how we can create a globally reduced subspace. Then we study

how to combine the locally linearised reduced systems to create a global TPWL model. Finally,

we discuss a numerical result of the TPWL method.
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1. Introduction

Nowadays a lot of circuits which are used in many fields are not only purely digital or
analogue. These circuits are a mixture of analogue and digital and are called mixed-signal
circuits. For developing these large circuits there is a need of tools which can simulate
these circuits efficiently during the design phase as well as during the verification phases,
i.e. also offering accuracy, robustness and different parameters.

Digital circuits behave nonlinear with respect to the source/input values. However,
the time-varying behavior may show several smooth periods. But the behavior changes
rapidly when there is an important change in the inputs. The digital part in mixed-signal
designs contains also several sub-circuits that are reused several times. The only difference
between these parts is that they have different inputs. So simplifying these circuits could
give a speed up for the transient analysis.

To do this we could use MOR methods, which are based on linear or quadratic reduc-
tion3 or nonlinear methods, e.g. proper orthogonal decomposition (POD5). However, these
methods are mostly developed for weakly nonlinear systems. This makes these methods
not so useful in circuit simulation, which often deals with highly nonlinear circuits. To
overcome this issue, a Trajectory Piecewise Linear (TPWL)4 approach for ordinary dif-
ferential equations (ODE) was developed. We will show how we can adapt these method
to DAEs.

In the next section we present our TPWL approach for nonlinear DAEs. In Section 3 we
show how the method performs in practice. Finally in Section 4 we draw our conclusions.
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2. Trajectory Piecewise Linear Model Order Reduction

In this section we discuss how we can apply the TPWL method to a nonlinear DAE
which is used to describe the dynamical behavior of a circuit. The DAE system to which
we want to apply the TPWL method is

d

dt
q(t,x) + j(t,x) + Bu(t) = 0,x(0) = x0

where q, j : R × R
n → R

n, B ∈ R
n×m and u : R → R

m. Here q represents the capacitance
and the inductance, j the resistances while B is the input distribution matrix and u is
the given input for the circuit.

The idea behind the TPWL method is to linearize the system at special time points
ti along a typical trajectory. The trajectory itself should represent the full nonlinear be-
haviour of the system. Then we reduce each locally linearized system with a linear model
reduction technique and store the basis of each locally reduced subspace Si. With the
help of the Si we compute a globally reduced subspace S. S is then used as the subspace
for all locally linearized system. The final TPWL model is a weighted sum of all locally
linearized reduced systems. The TPWL model can then be solved by a standard DAE
time integrator, e.g. a backward differential formula (BDF). In the following subsection
we show how we apply the described steps.

2.1. Creating the locally linearized models

The disadvantage of the standard linearization methods is that we can only trust the
results if the solutions stays close to the linearization tuple (LT), time and space, around
which we have created the linearized model. To overcome this disadvantage the idea is to
take several linearized models to create the TPWL model. These LTs will be taken along
a trajectory which represents the typical behavior of that system. If we do this we can
trust the results as long as the solution stays close to one of the LT. Figure 1 on page
3 illustrates a typical situation. In this situation we have 5 LTs (x̃0, . . . , x̃4), which are
created along trajectory A, and their related accuracy region (the gray region). We can
see that trajectory B and C stay in the accuracy region also if they have different inputs
B or different initial values C. And as long as the trajectories stay in the accuracy region
we can also be sure that we have a good approximation to the original system also with
different inputs an/or initial values.

We will discuss an approach which will chose as many LTs as needed to reach a given
accuracy and as less as possible to get the maximum speed up in the TPWL model.

To get the LTs we need a nonlinear solution of the original model, e.g. created by a
backward differential formula (BDF) approach, but only with a low accuracy because
it is enough if the LTs are close to the exact trajectory. The reason why we need only
a low accuracy is that we just want that the accurate, exact trajectory stays in the
accuracy region of all LTs. Because the accuracy region is normally relatively large it is
not important that the LT is the exact solution. With this in mind we see that it is a
good idea to include the selection of the LTs directly in such a method.

Similarly to a step size controller, we have the problem that accuracy of the actual
LT depends on the future LTs, because to calculate the global subspace we use all LTs
we create along the typical trajectory. So we can only make local accuracy assumptions.
Therefore we use a quite simple strategy for selecting a new LT.
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Fig. 1. Creating the linearization tuples, and curves with different sources and/or initial values

Algorithm 2.1 Linearization tuple controller

1. Set an accuracy factor ε > 0

2. Linearize the system around the last (i-th) LT (x̃i, ti). So we get

Ciẋ + Gix + Biu(t) = 0

where Ci = ∂q
∂x

(x̃i, ti) ∈ R
n×n, det Ci = 0 and Gi = ∂j

∂x
(x̃i, ti) ∈ R

n×n. Save Ci, Gi and Bi.
3. Reduce the i-th linearized system to dimension r ≪ n with a linear model reduction

method, e.g. ’Poor Mans’ TBR (PMTBR)2 or a Krylov approach1 , and project the
system to this locally reduced subspace which is spanned by Pi.

Cr
i ẏ + Gr

i y + Br
i u(t) = 0

where Cr
i = P⊤

i CiPi, Gr
i = P⊤

i GiPi and Br
i = P⊤

i B with Pi ∈ R
ri×n. y ∈ R

r is the
approximation to x with x ≈ Piy. Save Pi.

4. Simulate both the locally linearized reduced system with y0 = P⊤
i x̃i and the original

nonlinear system with a step size determined from the original nonlinear system. If at
t the absolute distance between the two solutions ||Piy−x||

||x|| becomes bigger than ε we
set the (i + 1)-th LT to (x, t) and go to step 2.

From the overview we know that the final TPWL model consists of a weighting of
several reduced linearized systems. The basis for the globally reduced subspace is created
by merging all locally reduced subspaces. This is done in such a way that the globally
reduced subspace represents the most dominant parts of the locally reduced subspaces.
So a good approximation for the global subspace is then just the actual locally reduced
subspace. With this in mind we just create the locally reduced subspace with a linear
model reduction technique, we have to do this anyway for the construction of the globally
reduced subspace, and we use this to project the local linearized subspace. Next we
simulate both systems, the original and the locally linearized reduced system, until the
distance between both systems is bigger then a given bound. At his point we then set a
new LT. Algorithm 2.1 on this page shows the procedure to find LT i + 1. We continue
with this procedure until we have reached the end of the given trajectory.

DOI: 10.1685/CSC06152
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Algorithm 2.2 Creating the globally reduced subspace

1. Define P̃ = [P1, . . . , Pp].
2. Calculate the SVD of P̃ . So P̃ = UΣV ⊤ with U = [u1, . . . , un] ∈ R

n×n,Σ ∈ R
n×rp and

V ∈ R
rp×rp.

3. Define P as [u1, . . . , ur].
4. Create the p locally linearized reduced systems given as Cirẏ+Giry+Biru(t) = 0 with

Cir = P⊤CiP , Gir = P⊤GiP and Bir = P⊤Bi

An extension to this approach is to calculate several typical trajectories to create a
bigger accuracy region. However the more LTs we have, the more memory for saving the
TPWL model we need, and the more involving the weighting procedure will be.

2.2. Creating the globally reduced subspace

After we have created p linearized systems and the p related locally reduced subspaces
we have to construct the globally reduced subspace. The reason why we need a globally
reduced subspace is that we want a smooth transition from one accuracy region to another
accuracy region while solving the TPWL model. If we would have for each local subspace
a separate reduced subspace the transition from on the another subspace would be way
to difficult.

Let us assume we have p locally reduced subspaces which are spanned by Pi ∈ R
n×ri, i =

1, . . . , p. Pi is the optimal reduced subspace for the i-th locally linearized system. The
columns of Pi span the i-th subspace, so one idea is to create a new matrix P̃ which
contains all columns of the Pi’s. So P̃ := [P1, . . . , Pp] spans then the union of all reduced
subspaces. Of course the columns of P̃ are in general linearly dependent and also the
number of columns is in general larger then n, so P̃ is not a good global projection
matrix. It is even high likely that several Pi are quite similar because the linearized
systems are also. Hence the columns of these Pi are quite dominant in the matrix P̃ . To
extract the span of the most dominant columns of P̃ , and so the most dominant part
of the union of the locally reduced subspaces, we use a singular value decomposition
(SVD) of P̃ = UΣV ⊤. Then U contains the most dominant columns of P̃ , and so from
all Pi, ordered by their importance. As the globally reduced subspace we take the one
which is spanned by the first r columns of U . With this globally reduced subspace we can
establish a smooth transition from one local system to another one. Summing up we get
the Algorithm 2.2.

2.3. Creating the TPWL reduced order model by weighting

Now we have p locally linearized reduced systems which lay all in the same globally
reduced subspace, but we still need to combine them to get a global TPWL model. We
do this by calculating a weighted sum of local models

p
∑

i=1

wi(y) (Cirẏ + Giry + Biu(t)) = 0.

To see how we should choose the weights we take a look to a simple example, see Figure
2. In this example we have 3 LTs x0,x1 and x2 and the related accuracy region, shown
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as circles. We also have 3 possible trajectory points of the TPWL model. y0 lays only in
the accuracy region of x1 so the related local system should have the biggest influence
to the TPWL model. Hence we should choose w1 ≈ 1 and w0, w2 ≈ 0. If we look to y1

we see that this point lays in the accuracy region related to x1 and x2 so we should take
a combination of both local models this means that we should choose the weights as
following: w1 + w2 ≈ 1 and w3 ≈ 0. For y2 we have the situation that the solution has
left all accuracy regions so we should stop the simulation at this point or give at least a
warning.

y0

y1

y2

x0

x1

x2

t0 t1 t2

Fig. 2. Simple TPWL model

A template for a weighting procedure is described in Algorithm 2.3.

Algorithm 2.3 Weighting template

given p LTs (tli ,yli), i = 0, . . . , p − 1 and b = 0

for i = 0 to p − 1

if y ∈ B((tli ,yli), (δt, δy))

0 ≪ wi ≤ 1.
b = 1

else

0 ≤ wi ≪ 1

end

end

if b = 0

Create warning
end

Such that
∑p−1

i=0
wi = 1

After calculating the weights we normalize them to get a convex combination of the
locally linearized reduced systems. If we choose the weight in the way as described in the
example we get a distance-depending weighting scheme as shown in Algorithm 2.4.

There also is an extended approach which uses instead of the distance an approximation
of the linearization error to calculate the weights.6 This approach is more complex because
we have to compute an estimate of the Hessian’s of q and j, but it produces an even better
TPWL model.

DOI: 10.1685/CSC06152
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Algorithm 2.4 Distance dependent weights
Given actual state y, actual time t, p LTs (tli ,yli) and αy, αt ≥ 0 with αy + αt = 1

1. For i = 0, . . . , p − 1 compute di = αy ‖y − yli‖ + αt |t − tli |

2. For i = 0, . . . , p − 1 calculate w̃i = e−
diβ

m with m = mini=0,...,p−1 di, β > 0

3. Normalize the weights such that the given constraints hold
wi = w̃i

s
with s =

∑p−1

i=0
w̃i

3. Numerical results

We will show the performance of TPWL method for two examples. These examples are
rather academic, but they demonstrate the performance of the proposed method.

3.1. Chain of inverters

As a test circuit we have chosen a chain of inverters, which consists of 100 inverters that
are connected in series. The circuit behaves nonlinearly so it is a good test for the TPWL
method. A schematic sketch of the circuit can be seen in 1. Also we have dependencies
between all nodes which is also not an optimal behavior for a model reduction process.
The DAE which is describing the dynamics of the circuit has 104 states (voltages at
nodes, and two currents through the voltage sources). For selecting the LTs we have used
Algorithm 2.4. For the linear model reduction technique we used PMTBR2 , that was
adapted to deal with our DAE. In Figure 2 we see the results for two different test setups
and in Table 1 we sum up the speed up for the simulation with the same input as the
training input.

U

u

op

in

Ground

R

C

R

C

1

R

C

2 n

Fig. 1. Schematic sketch of the chain of inverters circuit

In the first test setup we use the same input for testing as for creating the PMTBR-
TPWL model. It can be seen that the relative error is most of the time lower then the
given error bound. For all orders we have to use the same number of LTs (62), which
comes from the fact that the local systems only need relatively small subspaces to get
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Fig. 2. Relative error of the PMTBR-TPWL method for different orders (top) and inputs (bottom)

the desired accuracy. The resulting speed up is between 5.4 and 8.3 compared to a BDF
method, which needs 220s.

In the second setup we use test inputs which differ from the input we have used to
create the PMTBR-TPWL model. We use for example an input which is shifted in time
or which has an extra sinus wave added. The result shows that the TPWL method can
handle also inputs which differ from the training input as long as the new input stays
close to the original input.

3.2. Chain of Diodes

Next we considered the following circuit model which consists of N = 300 diodes, where
Is = 10−14 A, VT = 0.0256 V, C = 10−12 F, R = 104 Ω.

V1 − Uin(109t) = 0,

iE − g(V1, V2) = 0,

g(V1, V2) − g(V2, V3) − CV̇2 −
1

R
V2 = 0,

...

g(VN−1, VN ) − g(VN , VN+1) − CV̇N − 1

R
VN = 0,

g(VN , VN+1) − CV̇N+1 −
1

R
VN+1 = 0,

g(Va, Vb) =
{

(Ise
Va−Vb

VT − 1) if Va − Vb > 0.5
0 otherwise

Uin(t) =







20 if t ≤ 10
170 − 15t if 10 < t ≤ 11

5 if t > 11

To test the performance of the PMTBR-TPWL model we use the same input as we
used for creating the reduced order model. We see again that the relative error is most
of the time lower then the given error bound. Additionally we can see that for a lower
number of LTs (42) we need higher order models (100) and that with a higher number of

DOI: 10.1685/CSC06152
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org. red. red. red. org. red. red. red.

Problem 3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2
r 104 50 40 35 302 100 50 10

# LTs - 62 62 62 - 42 50 60
Extr. time - 240 236 233 - 206 285 290
Simul. time 220 41 31 27 142 2.3 1.5 1.1
max. error - 3.7% 3.3% 5.7% - 4.1% 4% 4%
Speed up - 5.4 7.2 8.3 - 62 95 129

mean error - 1.2% 1.7% 2.6% - 2.1% 1.9% 1.9%
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Fig. 3. Relative error and Voltages at specific nodes of the PMTBR-TPWL method

LTs (60) we can use lower order models. But it is also the other way around: the locally
reduced systems are more accurate if we choose a high order. Then the accuracy region
is (maybe) larger. So we need less LTs for high orders. The speed up for this circuit is
much higher (between 62 and 129). An explanation for this is that the simulation of the
original circuit needs a lot device evaluations which we do not need in the reduced order
model.

4. Conclusion

The TPWL method, applied to nonlinear DAEs, which are used to describe circuits, is a
promising technique to reduce the simulation time. It has several advantages compared to
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other methods. First of all we can get a big speed up in simulation time, in our test factor
8.3, because we are only solving small linear systems to approximate our system. We can
use the well-developed linear model reduction techniques to increase the performance of
our methods. And we are also able to create a linearization tuple controller that can be
used directly in a BDF method, which is a big advantage because we get a fast model
extraction technique. And we even can improve the properties of the TPWL model if
we construct a good weighting procedure. The last thing we want to mention is that the
TPWL method also has the nice property that it is scalable. This means that by using
different linearization tuple controllers, linear model reduction techniques and weighting
methods, we can change the method from a fast method but not so accurate method to
a slower but also much more accurate method. This means that the user can decide what
he desires: Speed or accuracy.
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