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Abstract

We consider the sixth elementary Volterra’s distortion for a circular hollow, homo-

geneous, elastic, isotropic cylinder, to analyze the load acting on the bases as a Saint

Venant external stress. We prove the specific load connected to the sixth distortion is

equivalent (in Saint Venant’s theory) to a right combined compressive and bending stress

and to a right combined tensile and bending stress. We have applied our results to a

material made up if steel to compare the obtained numerical results with the Volterra’s

predictions. We can see that the values calculated through the Saint Venant’s theory are

more strictly related to those calculated by Volterra when the cylinder thickness tends

to zero.

Keywords: Volterra’s distortions, Saint Venant theory.

1. Introduction.

The theory of elastic distortions, proposed by Volterra about one hun-
dred years ago, implied a deep revision of the mathematical theory of elas-
ticity in the case of multi-connected bodies. More precisely, Volterra be-
gan with Weingarten’s observations [11] to show that, in absence of exter-
nal forces, equilibrium configurations for elastic bodies occupying a multi–
connected domain and with with no null internal stress can exist.

The most general elastic distortion able to bring a right, circular, ho-
mogenous, hollow, isotropic cylinder to a state of spontaneous equilibrium,
consists of six elementary distortions. For each, Volterra has tried to deter-
mine a field of displacements which fulfills the indefinite equations of elastic
equilibrium and brings the body to a spontaneous equilibrium configura-
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tion. In the context of Volterra’s distortions, our paper analyzes the forces
induced by the sixth elementary distortion on the right circular, homoge-
nous, hollow, isotropic cylinder exploiting Saint Venant’s theory.
More precisely, we have underlined that, apart from a limited zone in the
immediate vicinity of bases, the distribution of forces, considered as a spe-
cific load, can be replaced with one statically equivalent. This can be done
without consequences on the effective distributions of stress and strain, and
therefore, without the necessity to define the effective punctual distribution
of this load acting on the bases of the cylinder.
Approaching the specific load as linear and constructing an auxiliary bar
which has as longitudinal section the axial section of the cylinder, we have
found the specific load connected to the sixth distortion is equivalent (in
Saint Venant’s theory) to a right combined compressive and bending stress
and to a right combined tensile and bending stress.
Our results have been applied to a fixed material to compare the ob-
tained numerical results with Volterra’s predictions: the values calculated
through Saint Venant’s theory are more strictly related to those calculated
by Volterra when the cylinder thickness tends to zero.

2. Volterra’s distortions.

Now we consider a circular hollow (therefore doubly connected), homo-
geneous, elastic and isotropic cylinder C, which is, at a certain assigned
temperature τ , in a natural state, that we assume as the reference config-
uration.

Fig. 2.1. Hollow cylinder in the natural state and the cross section x3 = 0.

We introduce into an ordinary space a Cartesian rectangular reference
0x1x2x3 with respective versors {c1, c2, c3} and we choose the axis 0x3

coinciding with the symmetry axis of the cylinder and the coordinate plane
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0x1x2 placed over the base. We indicate with ρ(x) =
√

x2

1
+ x2

2
and

θ(x) = arctg x2
x1

respectively, the distance of P from the axis of the cylinder
and the anomaly.
Hereafter, we call Σ the surface of C (see Fig. 2.1), made from the two
cylindrical coaxial surfaces Σ1 (internal surface of radius R1) and Σ2 (ex-
ternal surface of radius R2), and from the two bases Σ3 (at height x3 = 0)
and Σ4 (at the height x3 = d).

Let u(x) be the displacement vector which is the solution of the elastic
equilibrium problem for a body subjected to given external forces (without
external constraints and mass forces); let’s assume that u(x) includes a
many–valued term a related to θ(x).
The many–valued field of displacement u(x) has been physically interpreted
by Volterra [10] in terms of the following operations:
if the doubly connected cylinder is transformed into one which is simply
connected by a transversal cut on an axial semi–plane having the x3 axis
as edge, the vector u(x) can be characterized by a discontinuity of the first
type through the semi-plane of the cut. If a translatory and a rotatory dis-
placement is imposed on one of the faces of the cut by the application, at
constant temperature, of a system of external forces, a state of deforma-
tion, and therefore of stress due to the many–valued term including θ(x),
is created into the cylinder. In order that the cylinder remains in a state of
spontaneous equilibrium in the deformed configuration, i.e. with a regular
internal stress but absent of superficial forces, it is enough to re-establish
the continuity remaking the cylinder doubly connected by soldering the two
faces of the cut. In this way the cylinder assume a helicoidal configuration
absent of superficial forces and results in a state of regular internal stress.
So, if the cylinder C undergoes an isothermal many-valued displacement
u(x) from its natural state to an equilibrium configuration, then the stress
tensor field for all internal points of the equilibrium configuration and the
vector field acting on the boundary of the cylinder are in equilibrium. To
permit the boundary forces to vanish, we have to find an appropriate aux-
iliary displacement u′(x) 6= u(x), which brings the cylinder from the initial
natural configuration into a new equilibrium configuration (see [2,9]). Then
we can apply the displacement field

(2.1) u′′(x) = u(x) − u′(x)

to the natural configuration which changes into a new configuration. In this

aThis term is physically significant in a doubly–connected region of space, as a body
with hollow cylindrical symmetry.
Note that u(x) can eventually include another term whose singularity points belong to
a locus that doesn’t intersect domain C.
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new configuration an internal stress tensor field is present, but the boundary
forces vanish. The new configuration is called a “spontaneous equilibrium
configuration” and the vector field (2.1) (a many-valued function with the
characteristic axis coincident with the axis of the cylinder) represents what
Volterra called a “distortion”.
In addition, since the rigid displacement of a face of cut with respect to the
other can be obtained through a rigid translation displacement and a rigid
rotation displacement, a distortion can be described by six constant pa-
rameters l, m, n, p, q, r, called characteristic coefficients of distortion. They
correspond to the three Cartesian components of translation and rigid rota-
tion in respect to the axes x1, x2, x3. The distortion that has only one of the
six characteristic coefficients different from zero is defined Elementary dis-

tortion [6,4,7,10]. Analogously, the displacement induced by an elementary
distortion has no null in only one of the following coefficients l, m, n, p, q, r.
In particular, the 6th elementary distortion is the distortion related to the
coefficient r. It is realized by cutting the cylinder with an axial plane, rotat-
ing the face of the cut that faces the semi–plane x2 < 0 and, after adding
(when r > 0) or removing (when r < 0) a thin slide of matter, soldering
the sides.

Remark 2.1. After a general distortion, the body is in equilibrium with-
out external forces; hence in the body are been created compressed and
stretched fibres, distributed in such a way that the volume remains un-
changed [4,7,9,10]

If we consider the field of displacement relative to the sixth elementary
distortion it generates on the bases a distribution of surface forces which
has the following components in the cylindric reference frame (P, ρ∗, t∗, x∗

3)
obtained by translating in a generic point of the cylinder the axes ρ, t, x3:















fρ(ρ, 0) = 0
ft(ρ, 0) = 0

fx3(ρ, 0) =
r

2π

λµ

λ + 2µ

(

1 + log ρ2 −
R2

2 log R2
2 − R2

1 log R2
1

R2
2 − R2

1

)

= −a[b + log ρ2] ;

(2.2)














fρ(ρ, d) = 0
ft(ρ, d) = 0

fx3(ρ, d) = −
r

2π

λµ

λ + 2µ

(

1 + log ρ2 −
R2

2 log R2
2 − R2

1 log R2
1

R2
2 − R2

1

)

= a[b + log ρ2]
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where µ and λ are the two Lamé constants,

a = −
r

2π

λµ

λ + 2µ

and

b = 1 −
R2

2 log R2
2 − R2

1 log R2
1

R2
2 − R2

1

.

3. Saint’s Venant’s theory to analyze the sixth elementary dis-

tortion.

This section is devoted to analyze the specific load induced by the sixth
elementary distortion in Saint Venant’s theory (see [1,8]).
In Saint Venant’s theory one can replace the specific load with an equivalent
one. In this way, apart from a thin zone near the bases, called extinction

zone, we have no consequences on the effective distribution of stress and
strain. So, every solution of the problem of the elastic equilibrium can be
considered as a solution of an infinity of cases which are pertinent to an
infinity of load models, distributed with different laws, but having the same
resultant. This resultant can be replaced, as we know from static, by a force
through a generic point P ′ belonging to the base section, and by a couple
that has, in respect to P ′, the same moment of the resultant. b

Since the force and the couple can be decomposed with respect to the
three axes of the reference system, the six characteristics of the external

solicitation, i.e. the three components of the force and of the couple, are
individuated.
Hence, since these characteristics completely define every system of external
loads acting on the bases of the solid, it is unnecessary to define their
effective punctual distributions. As a consequence, the more general case
can be solved through a linear combination of six elementary cases: normal
stress, shear stress along x2, shear stress along x1, bending moment around
x1, bending moment around x2 and torsional moment.

Hereafter, we will assume that the hollow cylinder is thin c and we will
consider just the vertical component of the load, i.e. fx3(ρ, d), acting on the
base x3 = d. This component can be simply denoted with f(ρ), since, once
x3 is fixed, it is a function of ρ only.

Moreover, since f(ρ) is monotone in [R1, R2], the equation f(ρ) = 0 has

bThis resultant is applied in a suitable point, generally different from P ′.
cThis means that its thickness ∆ ρ = R2 − R1 is small with respect to the radius R1.
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in (R1, R2) one real root:

(3.1) ρn =

√

e

R2
2 log R2

2 − R2
1 log R2

1

R2
2 − R2

1

− 1
.

In other words, ρn is the value or the radius of the cylindrical neutral surface
of the hollow body with respect to the specific load.
Now, let’s consider a simply connected auxiliary rectangular beam. We

Fig. 3.1. Specific load distribution.

suppose that it has height d (i.e. the same height of the cylinder) and cross
section with unitary base for convenience. Moreover, it is subjected to the
load f(ρ) on the bases. d

Now we would like to analyze the two zones delimitated by ρn (see Fig.3.1)
and separately study the distribution of load.
More precisely, since in Saint Venant’s theory it is unnecessary to define
the effective punctual distribution of the load on the bases of the body,
we will appropriately reduce the load induced in each section by the sixth
elementary distortion to a normal stress and to a couple.
The normal stress and the momentum of the couple, both applied in the
barycenter of the section, will have a fundamental role in our analysis;
more precisely, they allow us to prove the specific load connected to the
sixth distortion is equivalent (in Saint Venant’s theory) to a right combined
compressive and bending stress and to a right combined tensile and bending
stress. Now we separately study the sections delimited by ρn.

In the upper section, where ρ ∈ (ρn, R2), let ρe be the value of ρ where
we have to translate the diagram of f(ρ) to divide the upper section in two
with, in modulus, the same area (see Fig. 3.2). Its explicit value is:

dIf we consider an axial section of the cylinder of height d, then it can be assimilated
to a longitudinal section of the auxiliary beam.
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Fig. 3.2. Decomposition of the specific load.

(3.2) ρe =

√

e
−

2R2 − 2ρn − R2 log R2
2 + ρn log ρ2

n

R2 − ρn .

As already underlined, the specific load acting on the section can be
represented by a normal stress N applied on the barycenter G1 of the
section whose modulus is

(3.3) N = f(ρe)(R2 − ρn) = a(R2 − ρn)(b + log ρ2
e) ,

and by a couple (C1,−C1). The modulus of the vector C1 is

(3.4) C1 = a
[

2(R2 − ρe) − R2(log R2
2 − log ρ2

e)
]

.

Moreover, the modulus of the total momentum respect to G1 of N applied
in the center of stress is

(3.5) MG1 = −a
(

ρ
G

(1)
1

− ρ
G

(2)
1

)

[

2R2 − 2ρe − R2

(

log R2
2 − log ρ2

e

)]

,

where ρ
G

(1)
1

and ρ
G

(2)
1

are the positions of the barycenters G
(1)
1 and G

(2)
1 of

the two sections having the same area.
Then, in agreement with Saint Venant’s theory, for all z ∈ [0, d] in the

section there is the action of the following linear σ
(1)
x3 (ρ) (right combined

tensile and bending stress):

σ
(1)
x3 (ρ) = a(b + log ρ2

e )C+
(3.6)

−
12a(ρ

G
(1)
1

− ρ
G

(2)
1

)
[

2R2 − 2ρe − R2

(

log R2
2 − log ρ2

e

)]

(R2 − ρn)3

(

ρ −
R2 + ρn

2

)

.
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In the lower section, where ρ ∈ (R1, ρn), let ρp be the value of ρ where
we have to translate the diagram of f(ρ) to divide the upper section in two
with, in modulus, the same area (see Fig. 3.2). Its explicit value is:

(3.7) ρp =

√

e
−

2ρn − 2R1 − ρn log ρ2
n + R1 log R2

1

ρn − R1 .

As already underlined, the specific load acting on the section can be rep-
resented by a normal stress N applied on the barycenter G2 of the section
whose modulus is

(3.8) N = f(ρp)(ρn − R1) = a(ρn − R1)(b + logρ2
p) ,

and by a couple (C2,−C2). The modulus of the vector C2 is

(3.9) C2 = a
[

2(ρn − ρp) − ρn(log ρ2
n − log ρ2

p)
]

.

Moreover, the modulus of the total momentum respect to G2 of N, applied
in the center of stress is

MG2 = −a
(

ρ
G

(1)
2

− ρ
G

(2)
2

)

[

2ρn − 2ρp − ρn

(

log ρ2
n − log ρ2

p

)]

,

where ρ
G

(1)
2

and ρ
G

(2)
2

are the positions of the barycenters G
(1)
2 and G

(2)
2 of

the two sections having the same area.
Thus, in agreement with Saint Venant’s theory, for all z ∈ [0, d] in the

section there is the action of the following linear σ
(2)
x3 (ρ) (right combined

compressive and bending stress):

σ
(2)
x3 (ρ) = a(b + log ρ2

p )+
(3.10)

−
12a(ρ

G
(1)
2

− ρ
G

(2)
2

)
[

2ρn − 2ρp − ρn

(

log ρ2
n − log ρ2

p

)]

(ρn − R1)
3

(

ρ −
R1 + ρn

2

)

.

The importance of Saint Venant’s theory applied to the sixth elementary
distortions is mainly based on the information content of the Eq. (3.6) and
(3.10). More precisely, they underline what kind of load is induced (in Saint
Venant’s theory) by the sixth elementary distortion: it is a right combined
tensile and bending stress and a right combined compressive and bending
stress. Hence, for every axial section it is possible to evaluate the tensional
state with the well–known Saint Venant’s formulas [8, pp. 144–145].
However, in order to apply Saint Venant’s theory, our analysis has required
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some assumptions: we have considered a suitable auxiliary beam and we
have assumed that the load on the bases has a linear diagram. So, to eval-
uate the deviation of our results from Volterra’s predictions, in this section
we compare Eq. (3.6) and (3.10) with fx3(ρ) computed by Volterra.
More precisely, let’s consider the cylinder made of steel, and let’s subject
the side of the cut to this rotation r = − 1.62 ∗ 10−5 rad. e Moreover, we
fixed R2 = 4 cm and then we examined the following two cases:

β =
R1

R2
= 0.5 ; β =

R1

R2
= 0.9 .

3.2 3.4 3.6 3.8
Ρ

0.1

0.2

0.3

0.4

0.5

Σx3

Β = 0.5

3.06cm=Ρn£Ρ£R2=4cm 2.2 2.4 2.6 2.8 3
Ρ

-0.8

-0.6

-0.4

-0.2

Σx3

Β = 0.5

2cm=R1£Ρ£Ρn=3.06cm

Fig. 3.3. Load in Volterra ’s theory (black) and load in our results (red) for β = 0.5.
The picture on the left refers to the upper section, i.e. 3.06 cm = ρn ≤ ρ ≤ R2 =4 cm;
while the picture on the right to the lower section, i.e. 2 cm = R1 ≤ ρ ≤ ρn =3.06 cm.

3.8 3.85 3.9 3.95
Ρ

0.02

0.04

0.06

0.08

0.1

Σx3

Β = 0.9

3.8cm=Ρn£Ρ£R2=4cm
3.65 3.7 3.75 3.8

Ρ

-0.1

-0.08

-0.06

-0.04

-0.02

Σx3

Β = 0.9

3.6cm=R1£Ρ£Ρn=3.8cm

Fig. 3.4. Load in Volterra ’s theory (black) and load in our results (red) for β = 0.9.
The picture on the left refers to the upper section, i.e. 3.8 cm = ρn ≤ ρ ≤ R2 =4 cm;
while the picture on the right to the lower section, i.e. 3.6 cm = R1 ≤ ρ ≤ ρn =3.8 cm.
Note that the two lines are indistinguishable.

These pictures clearly demonstrate that the red line (expression of load in

eThe smallness of the chosen angle is justified by the required thickness of the cylinder,
by the material it is made of and by the hypothesis that Saint Venant’s theory is valid
for small displacements.
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our results) is a good approximation of Volterra’s prediction, rather, indis-
tinguishable when β = 0.9, i.e. for a very thin cylinder. We can conclude
by seeing that the values calculated through Saint Venant’s theory are more
strictly related to those calculated by Volterra when the cylinder thickness
tends to zero.

REFERENCES

1. I. Bochicchio, E. Laserra and M Pecoraro, Sulla sesta distorsione el-
ementare di Volterra per un cilindro cavo omogeneo e isotropo di al-
tezza finita con carico alla Saint Venant, Atti dell’ Accademia Peloritana

dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, 86

(2008).

2. G. Caricato, On the Volterra’s distortions theory, Meccanica, 35 (2000),
pp. 411-420.

3. C. Cattani and J. Rushchitsky, Volterra’s distortions in nonlinear hy-
perelastic media, Int. J. of Appl. Math. and Mech., 3 (2005), pp. 14–34.

4. G. Grioli, Le distorsioni elastiche e l’opera di Vito Volterra, Atti dei

Convegni Lincei, 92 (1992), pp. 271-289.

5. E. Laserra and M. Pecoraro, Volterra’s Theory of Elastic Dislocations
For A Transversally Isotropic Homogeneous Hollow Cylinder, Nonlinear

Oscillations, 6 (2003), pp.(2003)56-73.

6. A.E. H. Love, The Mathematical Theory of Elasticity. Cambridge Uni-
verity Press, 4th edn., 1952.

7. A. Signorini. Lezioni di Fisica Matematica. Libreria Eredi Virgilio
Veschi, Roma, 1953.

8. R. Sparacio. Appunti delle lezioni del corso di scienza delle costruzioni.
Istituto di Scienza delle Costruzioni, Facoltà di Ingegneria, Napoli, 1975.
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