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Abstract

In this paper we study Buffon type problems with multiple intersections for lattices

of rectangles and a star consisting of four or six needles as test body.

Keywords: Geometric probability, stochastic geometry, random sets and
random convex sets.

1. Introduction.

Stars S, ¢ with n needles and plane lattices of parallel lines are consid-
ered in [1]. Stars S3 y and S5 ¢, and the lattice of rectangles are considered
in [2]. Among other test elements stars S , and lattices with obstacles are
considered in [3].
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Fig. 1. Stars Sy ¢, Sp,¢ and lattice R, 5 = Ra URy
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We denote by R, 5 the lattice of rectangles of sides a and b, A := £/a
and p := ¢/b, where ¢ is the length of the needles of the star (see figure 1).
Ra,» can be considered as union of the lattice R, of vertical lines distance
a apart and the lattice Ry of horizontal lines distance b apart.

The coordinates of the center point (z,y) of the star are random vari-

ables uniformly distributed in [—%, §] x [—%, g} The angle ¢ between one

S22
needle of the star and the x-axis is a random variable uniformly distributed
in [0, 27] (see figure 2). All random variables are stochastically independent.

We assume 2¢ < min(a, b), so that the stars can intersect only one line

of R, and one of Ry, (except sets of stars with measure zero).

2. Stars with four needles

Theorem 2.1. A star Sy is thrown at random onto the lattice Rq . If
20 < min(a,b), Sy ¢ intersects at most one of the vertical lines and at most
one of the horizontal lines of Rq . The mazimum number of intersections
is 4. The probabilities p(i,4,\, u) of exactly i intersections are given by

42 4
p(0,4,/\,u)=1—\[(>\+u)+ <2+7T)>\u,

P AN ) = > (VE-1) () —4p,
p(2,4,A,M):i(2—\@)(A+u)+4<1—i>m,
p(3,4,)\,u):4<i—1>/\u, p(4,4,\, ) = 2<1—i>)\,u.

Proof. There are i intersections between Sy ¢ and R, p (7 € {0,1,2,3,4}),
it S ¢ intersects R, in j points and at the same time R; in k points with
Jj+k=1(j,ke{0,1,2}). E. g. there are 2 intersections between S, , and
Ra,ba if

1)j+k=240, 2)j+k=1+1, 3)j+k=0+2.

We consider the situation for fixed angle ¢ (see figure 2). Sy ¢ intersects
R, in j points and at the same time R in k points, if the center point
(x,y) of Sy ¢ lies in a rectangle with side lengths a; and b,. We denote by
p(i,4, A\, pu| ) the conditional probability of exactly i intersections of Sy »
and R, for fixed angle ¢. The probability p(i,4, A, i), that Sy ¢ intersects
the sides of the lattice R, j i-times, is computed with the formula

2

p(’i, 47 )‘7 :U’) = /d)—Op(i, 47 )‘7 1% ’ ¢) f(qs) d¢
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Fig. 2. Star Sy ¢ and numbers of intersections

where f(¢) is the density function of the random variable ¢. Since ¢ is
uniformly distributed in [0, 27|, we have

£6) %for 0< ¢ <27,

0 elsewhere

and

. 1o
p(2a4aA7,u)_27_{_/(#;_01)<’5747)‘7/J”¢)d¢'

Due to the symmetry of Sy, it is sufficient to consider only ¢ with 0 <

¢ < m/4 and coordinates of the center point (x,y) with 0 < = < a/2 and

0 <y < b/2. The conditional probabilities p(i,4, A, it | ¢) are given by

_ Fi() ‘
F

p(i, 4, \, 1| @) or 1€{0,1,2,3,4}

with F' = iab and

Fo(¢) = aobo,

Fi(¢) = agby + a1bo,

F5(¢) = agba + a1b1 + asby,

F3(¢) = a1bs + azby,

Fy(¢) = azba,
where
ap = ap(¢) = 5 —Lcosd, a1 = a1(¢) = £(cos ¢ —sing) , az = as(¢) = Ising,
bo = bo(¢) = § — Lcos ¢, by = bi(¢) = a1(9), by = ba () = az(¢)
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(see figure 2). Calculating

4, A 16 [ d
p(z,4, 7”) - 7mb/¢:0 E(¢) ¢
for i € {0,1,2,3,4} we obtain the desired formulas. O

From the formulas in theorem 2.1 one gets the following approximate
expression:

p(0,4, 0, 1) ~ 1 — 1,80063 (A + 1) +3,27324 A 1,
p(1,4, A\, 1) = 1,05479 (A + ) —4 A p,

(2,4, M, 1) ~ 0, 745846 (A + 1) — 1,09296 A 1
p(3,4,\, 1) = 1,00296 A 1,

(4, 4,0, 1) ~ 0, 72676 A p.

3. Stars with six needles

Theorem 3.1. A star Sg ¢ is thrown at random onto the lattice Rq . If
20 < min(a,b), Se ¢ intersects at most one of the vertical lines and at most
one of the horizontal lines of Rq . The maximum number of intersections
is 6. The probabilities p(i,6, A\, ) of exactly i intersections are given by

p(O,G,A,m:l—i(Aww<fj+x/§)m,
( )= > ap,
o (B (6o
- -+ (£
p<4,6,A,u>=5(i—x/§>m, p(5,6,\, 1) = 2<2f—i>w,

p(6,6,A, p) = <i—\/§>m.

Proof. We denote by p(i,6, A, | ¢) the conditional probability of exactly
i intersections of Sg ¢ and R, for fixed angle ¢. The probability, that the
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Fig. 3. Star Sg ¢ and numbers of intersections

test body intersects the sides of the lattice R, ; i-times, is computed with
the formula

. 1o
p(Z,6,)\,M): 2/ p(Z,G,)\,,u|¢)d¢
T ¢=0

Due to the symmetry of Sg ¢ it is sufficient to consider only ¢ with 0 < ¢ < &
and coordinates of the center point (z,y) with0 <z < a/2and 0 <y < b/2.
The conditional probabilities p(i, 6, \, i | @) are given by

Fi()

P(i,6, 0 | ¢) = =% for i€ {0,1,....6}

with F = %ab and
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where
ap = ap(¢) = § —Lcos ¢, a1:a1(¢):%€(cos¢—\/§sin¢)),
ag = az(¢) = V3/sing, az = az(¢) = a1(¢),
bo = bo(¢) = 5 — §(sing + VBcosg) , by = by (¢) = Lsing,
by = ba(¢) = 5(V3cos¢ —3sing), by = bs(¢) = bi(9)
(see figure 3). Calculating
i) = 2 [ ro)as
for i € {0,1,...,6} we obtain the desired formulas. O

From the formulas in theorem 3.1 one gets the following approximate
expression:
p(0,6,\, 1) =1 —1,90986 (A + p) + 3,64191 \ v,
p(1,6,\, 1) =~ 0,511745 (A + ) — 1,90986 A 11,
(2,6, 1) =~ 0,886369 (A + u) — 3,28629 A 11,
p(3,6, A, 1) = 0,511745 (A + ) — 0, 711234 A pu,
p(4,6,\, 1) ~ 0,889043 A 11,
p(5,6,\, ) = 1,19863 A\ 1,
p(6,6,\, 1) = 0,177809 \ 1 .

Corrections to [2]

Page 2: The correct denominators in the formulas of p(2,3,\, u) and
p(4,3, A\, p) are 27 and 47 resp. instead of .

Page 3: In line 8 the formulas of the cases a and b must be exchanged.

13

In line 18 the correct text for case d is “..., needle 3 does’nt cut any line.”
In line 20 “d)” must be replaced by “e)”.
In line 25 the formulas of the cases d and e must be exchanged.

)

The right number of expressions in line 26 is “six” instead of “five”.

Page 5: The correct formula for p(6,5, A, p) is

10(vV5—1) —y/2(5+V5)
8T

p(6,5, A, 1) = A
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