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Abstract

In this paper we study Buffon type problems with multiple intersections for lattices

of rectangles and a star consisting of four or six needles as test body.

Keywords: Geometric probability, stochastic geometry, random sets and

random convex sets.

1. Introduction.

Stars Sn, ` with n needles and plane lattices of parallel lines are consid-
ered in [1]. Stars S3, ` and S5, ` and the lattice of rectangles are considered
in [2]. Among other test elements stars S3, ` and lattices with obstacles are
considered in [3].

Fig. 1. Stars S4, `, S6, ` and lattice Ra, b = Ra ∪Rb
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We denote by Ra, b the lattice of rectangles of sides a and b, λ := `/a
and µ := `/b, where ` is the length of the needles of the star (see figure 1).
Ra, b can be considered as union of the lattice Ra of vertical lines distance
a apart and the lattice Rb of horizontal lines distance b apart.

The coordinates of the center point (x, y) of the star are random vari-
ables uniformly distributed in [−a

2 , a
2 ] × [− b

2 , b
2 ]. The angle φ between one

needle of the star and the x-axis is a random variable uniformly distributed
in [0, 2π] (see figure 2). All random variables are stochastically independent.

We assume 2` ≤ min(a, b), so that the stars can intersect only one line
of Ra and one of Rb (except sets of stars with measure zero).

2. Stars with four needles

Theorem 2.1. A star S4, ` is thrown at random onto the lattice Ra, b. If
2` ≤ min(a, b), S4, ` intersects at most one of the vertical lines and at most
one of the horizontal lines of Ra, b. The maximum number of intersections
is 4. The probabilities p(i, 4, λ, µ) of exactly i intersections are given by

p(0, 4, λ, µ) = 1− 4
√

2
π

(λ + µ) +
(

2 +
4
π

)
λµ ,

p(1, 4, λ, µ) =
8
π

(√
2− 1

)
(λ + µ)− 4λµ ,

p(2, 4, λ, µ) =
4
π

(
2−

√
2
)

(λ + µ) + 4
(

1− 4
π

)
λµ ,

p(3, 4, λ, µ) = 4
(

4
π
− 1

)
λµ , p(4, 4, λ, µ) = 2

(
1− 2

π

)
λµ .

Proof. There are i intersections between S4, ` and Ra, b (i ∈ {0, 1, 2, 3, 4}),
if S4, ` intersects Ra in j points and at the same time Rb in k points with
j + k = i (j, k ∈ {0, 1, 2}). E. g. there are 2 intersections between S4, ` and
Ra, b, if

1) j + k = 2 + 0 , 2) j + k = 1 + 1 , 3) j + k = 0 + 2.

We consider the situation for fixed angle φ (see figure 2). S4, ` intersects
Ra in j points and at the same time Rb in k points, if the center point
(x, y) of S4, ` lies in a rectangle with side lengths aj and bk. We denote by
p(i, 4, λ, µ |φ) the conditional probability of exactly i intersections of S4, `

and Ra, b for fixed angle φ. The probability p(i, 4, λ, µ), that S4, ` intersects
the sides of the lattice Ra, b i-times, is computed with the formula

p(i, 4, λ, µ) =
∫ 2π

φ=0
p(i, 4, λ, µ |φ) f(φ) dφ
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Fig. 2. Star S4, ` and numbers of intersections

where f(φ) is the density function of the random variable φ. Since φ is
uniformly distributed in [0, 2π], we have

f(φ) =





1
2π

for 0 ≤ φ ≤ 2π ,

0 elsewhere

and

p(i, 4, λ, µ) =
1
2π

∫ 2π

φ=0
p(i, 4, λ, µ |φ) dφ .

Due to the symmetry of S4,` it is sufficient to consider only φ with 0 ≤
φ ≤ π/4 and coordinates of the center point (x, y) with 0 ≤ x ≤ a/2 and
0 ≤ y ≤ b/2. The conditional probabilities p(i, 4, λ, µ |φ) are given by

p(i, 4, λ, µ |φ) =
Fi(φ)

F
for i ∈ {0, 1, 2, 3, 4}

with F = 1
4ab and

F0(φ) = a0b0 ,

F1(φ) = a0b1 + a1b0 ,

F2(φ) = a0b2 + a1b1 + a2b0 ,

F3(φ) = a1b2 + a2b1 ,

F4(φ) = a2b2 ,

where

a0 = a0(φ) = a
2 − ` cosφ , a1 = a1(φ) = `(cosφ− sinφ) , a2 = a2(φ) = ` sinφ ,

b0 = b0(φ) = b
2 − ` cosφ , b1 = b1(φ) = a1(φ) , b2 = b2(φ) = a2(φ)
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(see figure 2). Calculating

p(i, 4, λ, µ) =
16
πab

∫ π/4

φ=0
Fi(φ) dφ

for i ∈ {0, 1, 2, 3, 4} we obtain the desired formulas.

From the formulas in theorem 2.1 one gets the following approximate
expression:

p(0, 4, λ, µ) ≈ 1− 1, 80063 (λ + µ) + 3, 27324λ µ ,

p(1, 4, λ, µ) ≈ 1, 05479 (λ + µ)− 4λµ ,

p(2, 4, λ, µ) ≈ 0, 745846 (λ + µ)− 1, 09296λ µ ,

p(3, 4, λ, µ) ≈ 1, 09296λµ ,

p(4, 4, λ, µ) ≈ 0, 72676λµ .

3. Stars with six needles

Theorem 3.1. A star S6, ` is thrown at random onto the lattice Ra, b. If
2` ≤ min(a, b), S6, ` intersects at most one of the vertical lines and at most
one of the horizontal lines of Ra, b. The maximum number of intersections
is 6. The probabilities p(i, 6, λ, µ) of exactly i intersections are given by

p(0, 6, λ, µ) = 1− 6
π

(λ + µ) +
(

6
π

+
√

3
)

λµ ,

p(1, 6, λ, µ) =

(
12− 6

√
3

π

)
(λ + µ)− 6

π
λµ ,

p(2, 6, λ, µ) =

(
12
√

3− 18
π

)
(λ + µ) +

(
6
π
− 3

√
3
)

λµ ,

p(3, 6, λ, µ) =
6
π

(
2−

√
3
)

(λ + µ)− 4
(

6
π
−
√

3
)

λµ ,

p(4, 6, λ, µ) = 5
(

6
π
−
√

3
)

λµ , p(5, 6, λ, µ) = 2
(

2
√

3− 9
π

)
λµ ,

p(6, 6, λ, µ) =
(

6
π
−
√

3
)

λµ .

Proof. We denote by p(i, 6, λ, µ |φ) the conditional probability of exactly
i intersections of S6, ` and Ra, b for fixed angle φ. The probability, that the
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Fig. 3. Star S6, ` and numbers of intersections

test body intersects the sides of the lattice Ra, b i-times, is computed with
the formula

p(i, 6, λ, µ) =
1
2π

∫ 2π

φ=0
p(i, 6, λ, µ |φ) dφ .

Due to the symmetry of S6,` it is sufficient to consider only φ with 0 ≤ φ ≤ π
6

and coordinates of the center point (x, y) with 0 ≤ x ≤ a/2 and 0 ≤ y ≤ b/2.
The conditional probabilities p(i, 6, λ, µ |φ) are given by

p(i, 6, λ, µ |φ) =
Fi(φ)

F
for i ∈ {0, 1, . . . , 6}

with F = 1
4ab and

F0(φ) = a0b0 ,

F1(φ) = a0b1 + a1b0 ,

F2(φ) = a0b2 + a1b1 + a2b0 ,

F3(φ) = a0b3 + a1b2 + a2b1 + a3b0 ,

F4(φ) = a1b3 + a2b2 + a3b1 ,

F5(φ) = a2b3 + a3b2 ,

F6(φ) = a3b3,
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where

a0 = a0(φ) = a
2 − ` cosφ , a1 = a1(φ) = 1

2 `(cosφ−√3 sin φ) ,

a2 = a2(φ) =
√

3 ` sinφ , a3 = a3(φ) = a1(φ) ,

b0 = b0(φ) = b
2 − `

2(sinφ +
√

3 cos φ) , b1 = b1(φ) = ` sinφ ,

b2 = b2(φ) = `
2(
√

3 cos φ− 3 sinφ) , b3 = b3(φ) = b1(φ)

(see figure 3). Calculating

p(i, 6, λ, µ) =
24
πab

∫ π/6

φ=0
Fi(φ) dφ

for i ∈ {0, 1, . . . , 6} we obtain the desired formulas.

From the formulas in theorem 3.1 one gets the following approximate
expression:

p(0, 6, λ, µ) ≈ 1− 1, 90986 (λ + µ) + 3, 64191λ µ ,

p(1, 6, λ, µ) ≈ 0, 511745 (λ + µ)− 1, 90986λ µ ,

p(2, 6, λ, µ) ≈ 0, 886369 (λ + µ)− 3, 28629λ µ ,

p(3, 6, λ, µ) ≈ 0, 511745 (λ + µ)− 0, 711234λµ ,

p(4, 6, λ, µ) ≈ 0, 889043λµ ,

p(5, 6, λ, µ) ≈ 1, 19863λµ ,

p(6, 6, λ, µ) ≈ 0, 177809λµ .

Corrections to [2]

Page 2: The correct denominators in the formulas of p(2, 3, λ, µ) and
p(4, 3, λ, µ) are 2π and 4π resp. instead of π.

Page 3: In line 8 the formulas of the cases a and b must be exchanged.

In line 18 the correct text for case d is “. . . , needle 3 does’nt cut any line.”

In line 20 “d)” must be replaced by “e)”.

In line 25 the formulas of the cases d and e must be exchanged.

The right number of expressions in line 26 is “six” instead of “five”.

Page 5: The correct formula for p(6, 5, λ, µ) is

p(6, 5, λ, µ) =
10

(√
5− 1

)−
√

2
(
5 +

√
5

)
π

8π
λ µ .
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