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Abstract

This paper deals with the Direct Simulation Monte Carlo for carrier transport in

submicron semiconductor devices. Different methods for the generation of the scattering

times, called Constant-Time technique (CTT) and Self-Scattering technique (SST), are

presented and compared, in order to analyze their efficiency and precision. One dimen-

sional steady-state simulations of a n
+
−n−n

+ silicon diode have been carried out. For

this particular device, SST seems to be more efficient than CTT.

Keywords: Submicron Silicon semiconductor devices, Direct Monte Carlo

Simulation, free flight.

1. Introduction.

The continued miniaturization of integrated circuits and the current
trend toward nanoscale electronics have led to tremendous integration le-
vels, with hundred million transistors assembled on a chip area no larger
than a few square centimeters. As a result, large electric fields and field-
gradients generate hot or energetic electrons, and a very large quantity of
heat being generated per unit volume.

The drift-diffusion equations, widely used in TCAD tools, are not able
to describe accurately these regimes, and for this reason other transport
models are needed. The natural framework for describing these regimes is
the Boltzmann Transport Equation (hereafter BTE), coupled with the Pois-
son equation [6]. To solve the BTE is a hard task because it is an integro-
differential equation with six dimensions in the phase space and one in time.
A stochastic solution of the BTE can be obtained by the Direct Simulation
Monte Carlo (DSMC) method, which replaces the distribution function with
a representative set of particles. Direct Simulation Monte Carlo (DSMC)
provides an accurate description of carrier transport phenomena because
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the various scattering mechanisms and band structure models are taken
into account. The alternative is to use hydrodynamic models obtained from
the BTE, which involve the solution of a coupled system of partial differen-
tial equations [1]. A larger difference between the two approaches is the way
in which the semiconductor physics is introduced into the formulation. In
the deterministic approaches, the physics is lumped into the parameterized
mobilities, diffusion constants and the analytic band approximation is deal
with only. In the DSMC technique, the physics enter in a more detailed way
by: (i) using the full semiconductor band-structure obtained from the em-
pirical pseudopotentials in order to study the hot electron transport beyond
the analytic band approximation; (ii) employing the carrier-lattice, carrier-
impurity and short-range Coulomb intercarrier collisions; (iii) treating the
Coulomb long-range interactions and degenerate statistics in heavily doped
regions. For this reason, access to the physics is more straightforward in
the Monte Carlo (MC) approach. One of the basic recipe of the DSMC is
the algorithm of generation of the free flight duration, i.e. the time between
two collisions.
The plan of the paper is the following: in section II the physics and nume-
rics used in the DSMC method are introduced, and in section III the free
flight generation mechanism is recalled. In section IV and V Self Scattering
technique and Constant Time technique respectively are explained. Finally,
in section VI these methods are compared by using a n+ − n − n+ silicon
diode, the results are shown and conclusions are drawn.

2. Physics and Numerics.

The BTE is an integro-differential equation which describes the time
evolution and the variation in the phase space of the unknown distribution
function f(t, x, k),

[

∂

∂t
+ v(k) · ∇x −

q

~
E(t, x) · ∇k

]

f(t, x, k) = Q(f)(t, x, k)(1)

where q is the absolute value of the electron charge, ~ the Planck constant
divided by 2π, v the electron group velocity, E the electric field, and Q(f)
the collisional operator. The linear scattering collision operator has the form

Q(f)(t, x, k) =

∫

Ω
w(k

′

, k)f(t, x, k
′

)dk
′

− w(k)f(t, x, k)(2)

where

w(k) =

∫

Ω
w(k, k

′

)dk
′

=
1

τ(k)
(3)
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is the total scattering rate.
Ω is called first Brillouin zone, which is a characteristic of each material. In
silicon this zone is formed by six equivalent ellipsoidal valleys located along
the axis of the frame of reference at about 0.85 G from the center zone [3],
where |G|= 2π/a and a is the lattice constant.
The main scattering mechanisms in silicon, at room temperature, are due
to electron-phonon interactions (acoustic and optical phonons).
Their transition probability, per unit time, from a state k to a state k′ can
be modeled as:

w(k, k
′

) = K0(k, k
′)δ(ε(k′)− ε(k)) +

6
∑

i=1

Ki(k, k
′)×

[

δ(ε(k′)− ε(k) + ~ωi)(nqi
+ 1) + δ(ε(k′)− ε(k)− ~ωi)nqi

]

where ~ωi is a phonon energy and nqi
the phonon equilibrium distribution

function. According to the Bose-Einstein statistics, nqi
is given by

nqi
=

1

exp(~ωi/kBTL)− 1
,

where TL is the lattice temperature.
The function K0 represents intravalley elastic scattering transition proba-
bility and it reads

K0(k, k
′) =

kBTLΞ2
d

4 π2~ ρ v2
ρ

,

where Ξd is the acoustic-phonon deformation potential, ρ the silicon mass
density, vs the sound velocity of the longitudinal acoustic mode.
Ki represents the inelastic scattering probability and is given by

Ki(k, k
′) =

Zf (DtKi)
2

8 π2ρ ωi
,

where DtKi is the deformation potential for the i-th optical phonon, and
Zf is the number of final equivalent valleys for the considered inter-valley
scattering. In the quasi parabolic approximation, considered in this paper,
the kinetic energy ε(k) of an electron satisfies the relation:

ε(k)[1 + αε(k)] =
~

2k2

2m⋆
, k ∈ Ω,

where m⋆ is the effective electron mass (which is 0.32me in silicon) and α
is the nonparabolicity factor. The electron group velocity v ≡ (v1, v2, v3) is
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given by

v(k) =
1

~
∇kε =

~k

m⋆[1 + 2αε(k)]
.

During the free flight, particles move according to Newton’s equations of
motion

dx

dt
=

1

~
∇kε(k)

~
dk

dt
= −qE(t, x)

where ε(k) is the kinetic energy of the considered crystal conduction band
structure measured from the band minimum. The electric field E(t, x) sati-
sfies the Poisson equation

∆(ǫφ) = q

[

n(t, x)−ND(x) + NA(x)

]

,

E = −∇xφ, n(t, x) =

∫

Ω
f(t, x, k)dk,

where φ(t, x) is the electric potential, ND and NA are respectively the donor
and acceptor densities (which are positive functions).
The system formed by the Newton’s equations and the Poisson equation
is solved with a numerical scheme, e.g. Runge-Kutta scheme [4], up to the
next scattering time, or to a fixed time step ∆t if no scattering occurs.

Remark 2.1. Regarding the choice of the time step ∆t, during which the
equations of motion are integrated, in order to avoid plasma oscillations [5],
it is necessary to choose

∆t≪
1

ωp
≃ 76fs

where ωp is the plasma frequency. The number in the previous formula, has
been evaluated for the high doping region in the device.

3. Free flight generation.

Usually the scattering process is considered markovian. Consequently,
the probability that a particle does not suffer a collision in the time interval
[0, t] is :

P (t) = exp

[

−

∫ t

0
w[k(t′)]dt′

]
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where w(k) is the total transition probability given in (3). In order to ge-
nerate a stochastic free flight, one takes an uniform distribution of random
numbers r and tries to solve the problem:

P (t) = r

or by taking the logarithm,

− log r =

∫ t

0
w[k(t′)]dt′.(4)

The time t is the free flight duration.
Since the solution of the eq. (4) is of paramount importance to obtain an
efficient implementation of the algorithm, some methods have been intro-
duced [2], [9]. These methods are:

• Self Scattering Technique (SST)
• Constant Time Technique (CTT)

In both methods the DSMC introduces an error, called splitting error,
due to the fact that the equations of motion are solved during the time step
∆t with a frozen electric field, evaluated at the previous step.

4. Self Scattering technique.

In SST a common approach is the introduction of fictitious scattering
events.
If the self scattering is selected, nothing happens to the particle which
maintains, after the scattering, the same energy and the same momentum
it had before.
Self scattering does not alter statistical distribution of the real scattering
events, but the total scattering rate changes.
The algorithms implemented, in the class of the SST, are the following:

• Constant-Gamma scheme [9]
• Piecewise-Constant-Gamma scheme [3]
• Individual-Gamma scheme [8]

4.1. Constant Gamma scheme (CG).

Let Γ be a number greater than the largest scattering rate possible in
the simulation and let introduce a fictitious scattering probability wss(k)
so that

w(k) + wss(k) = Γ = const .
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Then the equation (4) gives

t = −
log r

Γ
.

The main advantage of this technique is that the programming is very
simple; one disadvantage is that a lot of computer time, about the 90%, is
spent performing computations related to this scattering.
In order to reduce the number of self scatterings, some improvements to
this algorithm have been proposed [10].

4.2. Piecewise-Constant-Gamma scheme (PWCG).

Sometimes the total scattering probability has a large variation around
some threshold value due to strong scattering mechanism with a given acti-
vation energy. In this case a single value of Γ may result in a large number
of self-scattering events at low electron energy (see Fig. (1)). It is then pos-
sible to introduce a step-shaped scattering rate, as follows.
Let t0 be the current simulation time, ε0, k0 the corresponding particle e-
nergy and wave vector and ε1 a suitable threshold energy. Let divide the
particles into two subsets: S1 whose particle energy is ε ≤ ε1 (with inverse
scattering rate Γ1) and S2 whose particle energy is ε > ε1 (with inverse
scattering rate Γ2). The quantity Γ2 is chosen to be the maximum value
during the simulations, which corresponds to a maximum energy εm = 1
eV. Moreover, let r be a random uniform number and tr the free flight
duration.
The implemented PWCG algorithm is the following:

1. generate r
2. if ε0 > ε1 goto 3 else goto 4
3. tr = t0 −

1
Γ2

log r → return

4. tr = t0 −
1
Γ1

log r
5. move the particle in free flight in the time interval [t0 , tr ], and evaluate

its final energy εr

6. if εr < ε1 return else goto 7
7. since the particle energy is above ε1, tr cannot be retained. The new

time is tr = − 1
Γ2

log r + t̃
(

1− Γ1

Γ2

)

+ t0, where t̃ is the time necessary for

the electron to reach the energy ε1

8. goto 5

Through this algorithm, it is possible to obtain a gain in the number of
scattering events. The gain is given by the region of Fig.(1) characterized
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Fig. 1. Sketch of a two-level step-shaped scattering rate, including self-scattering.

by slanting lines. For the calculation of t̃ a linear interpolation is performed,
which introduces a further error in the algorithm.

4.3. Individual-Gamma scheme (IG).

In order to further reduce the number of self scatterings, it was im-
plemented an algorithm in which a scattering rate Γ is generated for each
particle.
Let t0 be the current simulation time and ε0 the corresponding particle
energy.
The implemented algorithm is:

1. fix the i-th particle
2. let move the particle in [t0, t0 + ∆t], and evaluate its final energy ε1 =

ε(t0 + ∆t)
3. calculate εM = max(ε0,ε1) and evaluate Γ = Γ(εM )
4. generate a random uniform number r
5. tr = t0 −

1
Γ log r

6. if tr > t0+∆t goto 1 (the i-th particle is arrived at the final time without
any scattering, forget tr , continue with the next particle i← i + 1 ) else
goto 7

7. move again the particle in [t0, tr]
8. check if a scattering (self or real) occurs
9. until (t0 + ∆t)− tr > 0, t0 ← tr goto 2 .

In IG algorithm no further error is introduced and the number of self-
scatterings reduces, as will be shown in Section 6.
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5. Constant Time Technique.

In CCT the total simulation time is subdivided into time intervals ∆t.
The probability that a particle will survive without scattering during a
ballistic flight of duration ∆t is

exp

{

−

∫ t+∆t

t

dt′

τ [k(t′)]

}

≃ exp

{

−
∆t

τ(k)

}

having assumed that the time step ∆t is small enough so that k(t′) can be
taken as constant during the free flight.
If ∆t /τ(k)≪ 1, the probability that the particle will scatter at the end of
the free-flight of duration ∆t can be approximated as:

1− exp

{

−
∆t

τ(k)

}

≃
∆t

τ(k)
.

Therefore, for each particle the total scattering rate is evaluated at the final
wavevector k(t + ∆t) and the following comparison is made:

∆t

τ(k)
≥< r1(5)

where r1 is a random number ∈ [0,1].
If in eq. (5) the operator ≥ holds the particle suffers a scattering, otherwise
no scattering occurs.
It should be underlined that, in addition to the splitting error, in CCT the
operations of approximations and series expansion of the integral introduce
a systematic error, which influences the number of scatterings.
The positive aspects of the use of the CTT are the following: (i) is very
simple to implement, because the particles are synchronized in time; (ii) is
simple to obtain a parallel version of the algorithm; (iii) is very efficient, in
terms of CPU time, because the scattering check is done every ∆t.

6. Results.

For this paper, a one-dimensional n+ − n − n+ silicon diode was used.
This diode consists of two highly doped regions n+, called cathode and a-
node, connected by a less doped region n, called channel.
In the simulations, the n+ regions are 150 nm-long doped to a density of
2×1017cm−3, while the channel is 250 nm-long doped with a density n of
1015cm−3. The device is considered at room temperature T0 =300K, and
the applied bias is 1 V. The particle number was fixed and is N = 62000.
In the first step, the average number of scattering events was calculated for
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CG, PWCG and IG schemes. The perfomance of the PWCG scheme was
evaluated for different values of the threshold energy ε1.
As you can see in table (1), in PWCG scheme the average number of self-
scattering events is smaller than the average number of self-scatterings in
CG scheme.
Moreover, in the PWCG this number reduces when the value of the energy
ε1 decreases.
However, the best result is obtained by the IG scheme, in which the self-
scattering percentage is only the 2%, which predicts a gain in the CPU
time.

Table 1. Average number of scattering events per particle per
time (in ps)

Algorithm RealScat SelfScat SS percentage

Constant-Gamma 6.3 113 95 %

PW-C-Gamma Γ1(0.4) 6.3 45.1 88 %

PW-C-Gamma Γ1(0.2) 6.3 26.5 81 %

PW-C-Gamma Γ1(0.1) 6.3 16.4 72 %

Individual-Gamma 6.3 0.12 2 %

In a second step, a comparison between the Constant Gamma and the
Piecewise-Constant-Gamma schemes was performed. As shown in Fig.(2),
the PWCG algorithm introduces an error in the average velocity and in the
average energy, wich decreases when the value of the threshold energy ε1 is
increased.
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Fig. 2. The average velocity (on the left) and the average energy (on the right) versus
x for some value of ε1.

By comparing the results obtained with the CG scheme and the IG scheme,
it is evident that IG algorithm does not introduce errors, apart from the
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splitting error, neither in the average velocity nor in the average energy, as
shown in Fig. (3). This happens also for different values of the time step
∆t.
In Fig. (4) the behaviour of the CTT is shown. It can be seen that, by
varying the value of the time step, a big error is introduced in the average
velocity and also in the average energy.
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Fig. 3. The average velocity (on the left) and the average energy (on the right) versus
x, obtained with the IG algorithm.
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Fig. 4. The average velocity (on the left) and the average energy (on the right) versus
x, obtained with the CCT algorithm.

The last considerations are about the CPU times and the precision of
the implemented algorithms.
For SST the splitting error vanishes for ∆t = 60fs, which corresponds to a
CPU time of ≃ 300s (see Fig. (5)).
The same amount of CPU is used in CTT case for ∆t = 4fs and in IG case
for ∆t = 10fs.
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Fig. 6. Error in the velocity (on the left) and in the energy (on the right).

But, in the case of the CTT, for ∆t = 4fs, the error is still significant and
is: (i) 3.44% for the energy; (ii) 8.85% for the velocity, as shown in Fig. (6).
In the IG case, in correspondence of 300s of CPU time, there is the same
precision of the STT.
But, by comparing the performance of the two algorithms in correspon-
dence of ∆t = 60fs, is evident that in IG there is a gain factor which is
about 3.
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