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Crack initiation in elastic bodies
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In this talk, we illustrate the results obtained in [1] in collaboration with Antonin
Chambolle (Ecole Polytechnique, Paris, France) and Marcello Ponsiglione (Max Planck
Institute for Mathematics in the Sciences, Leipzig, Germany) and concerning crack initi-
ation in elastic bodies.

Griffith’s criterion for crack propagation in hyper-elastic bodies [5] asserts that, during
a load process, a crack I' can grow only if the energy dissipated to enlarge the crack, which
is basically assumed to be proportional to the area of the cracked surface, is balanced by
the corresponding release of bulk energy. According to Griffith’s theory, if €1 represents
a two dimensional hyper-elastic body, ¥ is a boundary datum and I' is a curve in €
parametrized by arc length, then the crack I'(ly) is in equilibrium if

Wlnl) - Wulh +0) _,

(0.1) k(ly) := limsup
1—0+ !

where u(lp) and u(ly + 1) are the displacements associated to ¢ and to the cracks I'(lp)
and ['(lp + 1) respectively, W is the bulk energy functional and k is the toughness of the
material. A quasistatic crack evolution is determined by an increasing function ¢t — ()
satisfying the Griffith’s criterion for crack propagation, which asserts that for every t we
have k(I(t)) < k and

(k= k(1())I(t) = 0,
i.e., I'(I(t)) propagates if and only if (0.1) holds with equality.

The case of crack initiation, i.e., when there is not a pre-existing crack in the body,
corresponds to the situation l[; = 0. A fundamental role in the problem is played by
the singularities of the body, namely the behavior of the elastic energy concentration of
the deformation. Experiments show that small cracks usually appear near sufficiently
strong singular points of the body, whose position are essentially determined by its in-
homogeneities. If the singularities of the body are sufficiently weak (for instance this is
the case of homogeneous isotropic materials), a lot of results in the literature of material
science show that the derivative in (0.1) for [y = 0 is equal to zero. The conclusion is that
Griffith’s criterion is not adequate to predict crack initiation (and, as a consequence, a
crack evolution originating from an uncracked configuration). These results require that
the path of the crack is sufficiently regular (a line or a smooth curve). In [1] we prove
that the same conclusion holds in the class of all one dimensional closed sets with a finite
number of connected components. More precisely we prove that the limit in (0.1) is zero
if I'(1) is any family of closed sets with length less than [ and with at most m connected
components, with m independent of [. In particular we do not prescribe the path nor the
shape of the cracks.
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The main tool we employ to address the problem of crack initiation is a local minimality
result for the functional

(0.2) /Q f(z, Vv)dz + kH'(T),

where Q is a bounded Lipschitz open set in R?, & > 0, and f : Q@ x R? — R is a
Carathéodory function strictly convex and C* in the second variable, satisfying standard
p-growth estimates with p > 1, and such that f(z,0) = 0. H! stands for the one-
dimensional Hausdorff measure, which coincides with usual notion of length on the class
of regular curves. The functional (0.2) is a variant of a functional which has first appeared
in the theory of image segmentation, in a celebrated paper by Mumford and Shah [6].

In our setting, the crack I' belongs to the class K,,(€2), that is the family of closed sets
in 2, with at most m connected components, and with finite length, i.e., H(I') < +oo0.
The displacement v belongs to the Sobolev space WP (Q2\ T') and satisfies the boundary
condition

v=1 on OpQ\ T,

where dp§) C 02 is open in the relative topology, and v is (the trace of a function) in
WhP(Q) N L>2(Q).

Let ur be a minimum energy displacement relative to ¢ and I, i.e., let ur be a minimizer
for

(0.3) min {/Q flz,Vo)dz : ue WH(Q\T),v =1 on aDQ} .

We denote by u the elastic configuration of €) relative to the boundary datum v, i.e., a
solution of (0.3) with T" = (), and we assume that « admits uniformly weak singularities
in €, i.e.,

(04) ||vu||ip(BTmQ) <Cr®

for some constants a > 1 and C' > 0 and for every ball B, with radius . Condition (0.4)
means that the bulk energy of the elastic configuration u in a ball B,.(z) is negligible with
respect to the length of 0B, () as r goes to zero, uniformly in x € Q.

Our main result is the following Theorem, which establishes that under the previous

assumptions small cracks are not energetically convenient for the functional (0.2).

Theorem. Assume that u admits only uniformly weak singularities in €. Then there

exists a critical length [* depending only on €2, f, k, 1) and m such that for all T € IC,,(£2)
with HY(T') < I* we have

(0.5) /Qf(:v,Vu)das</Qf(x,Vup)dx+k‘Hl(F).

Let us briefly comment the assumption about the singularities of u. The minimality
result is false if the elastic solution u has strong singularities, namely if there exists x € ()
such that

1
(0.6) lim sup —/ |\VulP de = +00.
By (2)NO

r—0 nQ
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In fact condition (0.6) ensures that it is energetically convenient to create a small crack
[' := 0B,(z) around x: the surface energy needed to create such a crack is proportional
to r, while the corresponding release of bulk energy is by (0.6) bigger than r if r is small
enough.

The critical case when the right hand-side of (0.6) is a constant 0 < C' < oo corresponds
to the singularity appearing around the tip of the crack. In this case the celebrated
Irwin’s formula states that the release of bulk energy per unit length along rectilinear
increments of the crack is equal to the so called mode III stress intensity factor Ky,
which is proportional to C. In our class of cracks K,,(Q) we have that if C' is small
enough, then the release of bulk energy per unit length is less than k, and therefore our
minimality result still holds, while it is false if C' is too large. We can not fill the gap,
and therefore we do not achieve a sharp Irwin type formula in our class of cracks.

Our study is in part motivated by the variational model for quasistatic crack propaga-
tion proposed by Francfort and Marigo in [4], where the issue of brutal crack initiation
is discussed. A crack evolution I'(t) is brutal when it is of the type

['(t)=0 forevery t <t

and
inf H'(T'(t)) > 0,

t>t;

where t; is referred to as time initiation of the crack. As a consequence of our main
result, we prove that, in the framework of Francfort-Marigo theory and within our class
of admissible cracks KC,,(€2), crack initiation is always brutal whenever the elastic dis-
placement presents sufficiently weak singularities. On the contrary, in presence of a point
x of strong singularity the crack initiation is progressive: a crack departs from x at the

initial time of loading and with zero velocity.
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