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Abstract

Many problems arising from engeneering and scientific computing give rise to large,

sparce matrices.

The aim of this work is to describe a set of highly efficient iterative methods for solving

linear systems with large sparse matrices, arising from the analysis of seismic body wave

propagation.

An “ad hoc” initial boundary value problem is formulated for heterogeneous dissipative

media with arbitrary topography. Its numerical implementation is based on Finite Ele-

ment Method on non structured mesh.

Some results are presented.

Keywords: Large Sparse Matrix, Finite Element Method, Gauss-Seidel
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1. Introduction

In seismology, the physics of continuum domain is described by Partial
Differential Equations (PDEs). Their resolution can be realized by means
of several numerical techniques, such us Finite Difference Method (FDM),
Spectral Element Method (SEM), Finite Element Method (FEM), and so
on.
In literature, it is possible to find a wide variety of algorithms for the sim-
ulation of earthquake both in 2D [10], [11] and in 3D [1], [8].
In detail, we deal with 3D case. In [1], Fourier and Chebychev methods
are used, while in [8], the author introduces a memory optimization proce-
dure that allows large-scale 3D finite-difference problems to be computed
on a conventional, single-processor desktop workstation. With this tech-
nique, model storage is accommodated using both external (hard-disk) and
internal (core) memory.
In this paper, we solve, by means of FEM, an initial boundary value prob-
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lem (IBVP) that describes the wave propagation in heterogeneous dissi-
pative media. We have chosen FEM because the traction-free condition at
the outer boundary of the medium is already been cast in its formulation.
Moreover, its integro-differential equations allow us to consider not regular
but integrable functions.
On the contrary, FDM requires much less computer memory and a shorter
computational time.
As well, even if SEM has attractive properties regarding accuracy, error
tolerance, computational efforts and memory storage, FEM is better suited
for handling problems involving non linear behaviors or singularities, and
allows a more effective mesh refinement.
The matrix obtained applying FEM is sparse. The entry (i, j) is non zero
if and only if the nodes i and j of the mesh are connected, so the pattern
of the matrix is obviously symmetric. Also, since we consider a problem in
3 dimensions, the elements of the matrix are 3 × 3 blocks. For that, it is
memorized with block Compressed Sparse Row (CSR) format.
In the first section of the paper, we describe the wave propagation in a
heterogeneous unbounded medium with free-surface. In the second one, we
present the FEM and the weak formulation of the problem.
In the last part, the Gauss-Seidel method and a generalization of the in-
complete Cholesky factorization have been employed for solving the linear
system.
The implementation of our algorithms is tested on a theoretical problem,
to compare the numerical solution with the analitical one.

2. The model

First of all, we mathematically describe an heterogeneous medium.
The following model is a simplification of the IBVP presented in [2].
Let R3 be the three dimensional real space and x = (x, y, z) ∈ R3 a generic
vector; let f(x, y) be a regular function in R2,

Ω =
{

(x, y, z) ∈ R3 : z > f(x, y), (x, y) ∈ R2
}

whose boundary

∂Ω =
{

(x, y, z) ∈ R3 : z = f(x, y), (x, y) ∈ R2
}

describes the so called free-surface of Ω.
Its graphically representation is shown in Fig.1. The medium is character-
ized by the mass density for unit volume ρ(x) and by the Lamé constants
λ(x) and µ(x). They, generally, are point functions of the medium, defined
for all x ∈ Ω.
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Fig. 1. Mathematical scheme of a heterogeneous unbounded medium Ω with mass den-
sity ρ(x) and the Lamé constants λ(x) and µ(x).

The wave propagation is described by the following initial boundary value
problem (IBVP), for heterogeneous media,

(1)



ρ(x)
∂2u

∂t2
=∇ ((λ(x) + 2µ(x))∇u)−∇ (µ(x)∇u) +

+ F (x, t) ∀(x, t) ∈ Ω× (0,+∞)
u(x, 0) =0 ∀x ∈ Ω

∂

∂t
u(x, 0) =0 ∀x ∈ Ω

∂

∂n
σ(x, t) =0 ∀(x, t) ∈ ∂Ω× (0,+∞)

The quantity ∇ ((λ(x) + 2µ(x))∇u) − ∇ (µ(x)∇u) represents the inner
forces, while F (x, t) is the input radiation.
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3. Finite Element Method

FEM can be applied both to engineering and to large-scale seismological
problems. It can be especially considered a powerful tool for the numerical
resolution of seismic body waves propagation problems.
The integration domain is divided into parts by a non structured mesh,
that is able to reconstruct, numerically, the energy shearing processes on
the phase directions at the interface. The latter splits regions with different
physical properties.
The use of non structured mesh assures the full agreement between inter-
faces and elements. The interfaces do not split the elements avoiding further
approximations of the functions in their nodes.
The mesh is implemented by LaGriT, a program prepared by Los Alamos
National Security, LLC at Los Alamos National Laboratory (LANL) with
the U.S. Department of Energy (DOE). (http://lagrit.lanl.gov/)
The mesh step dh depends on the maximum frequency fmax and on the
minimum wave velocity vmin in Ω , as follows

dh = 3

√
vmin

12fmax

As well FEM is unconditionally stable on non structured mesh.
The equation of waves evolution can be numerically written through the
weak formulation and, in particular, using Galerkin method [9], as follows,

M2 d
2

dt2
U +M0U = f.

M2, M0 are square matrices whose size is three times nodes number. Their
entries are

M2
lm =

∫
Ω
ρ(x)Nm(x)dΩ,

M0
lm =

∫
Ω

(λ(x) + µ(x))∇Nm(x)∇Nl(x)dΩ.

U and f are vectors with entries, respectively,

Um = um(t), fl =
∫

Ω
Fl(x, t)Nl(x)dΩ.

Ni(x) are the basis function of the weak formulation.
The numerical solution has been greatly enhanced by the use of a scheme
for canceling the reflections at the boundaries of the model, the so called
absorbing boundary conditions.
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Because of the half-space Ω is replaced by a finite domain, in order to avoid
artificial reflection introduced by the faces, the artificial boundaries have
to be supported by artificial boundary conditions so that the perimeter of
computational grid becomes transparent to outward-moving waves .
We adopted the Caserta-Firmani-Ruggiero transparent conditions [10],
which are a generalization of the Clayton-Engquist-Stacey conditions [3],
[4], [5], [6], [7], [12] because they provide good results both in 2D domain
and in our 3D model.

Applying the transparent conditions, our problem can be written in the
following form,

(2) M2 d
2

dt2
U +M1 d

dt
U +M0U = f

M0,M1,M2 have dimension 3 times nodes number.
In M0 and M2 the generic entry (i, j) is not zero, if and only if the nodes
i and j of the mesh are connected.
Instead, in M1 the generic entry (i, j) is not zero, if and only if i or j are
boundary nodes and, moreover, they are connected.
Then, M0, M1 and M2 are block matrices, mainly zeros. For that, we stored
them through compressed sparse row (CSR) format.
The discretization respect to the time is carried out through Newmark
method, such us

U̇
n+1

= U̇
n

+ δt
(

(1− β) Ü
n

+ βÜ
n+1
)

Un+1 = Un + δtU̇
n

+
δt2

2

(
(1− α) Ü

n
+ αÜ

n+1
)

So, from the equation (2) , we get

(3) AÜ
n+1

= bn+1

where

A =M2 + βδtM1 + α
δt2

2
M0

bn+1 =fn+1 −
[
(1− β)M1 +

δt2

2
(1− α)M0

]
Ü
n−

−
(
M1 + δtM0

)
U̇
n −M0Un.

The Newmark method has its maximum stability when α = 1
4 and β = 1

2 .
In this case, in fact, it is unconditionally stable and it reaches its maximum
accuracy if time step

δt ≤ dh

vmax
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where dh is the mesh step and vmax is the maximum velocity in the numer-
ical domain.

4. Comparison of Gauss-Seidel Method and Incomplete Cholesky
factorization

Matrix sparsity provides an opportunity to conserve storage and reduce
computational requirements by storing only significant entries.
There is no single “best” method to represent a sparse matrix.
The selection of the possible storage format is dependent on the algorithm
being used, the original sparsity pattern of the matrix, the underlying com-
puter architecture, data format, and so on.
Because of this, typically use of libraries consists of create an internal sparse
matrix representation. They return an handle used as parameter in the rou-
tine that solves the linear system. If the matrix is no longer needed, the
libraries deallocate it to free resources associate with the handle.
In both our developed algorithms, the full matrix is never displayed, but it
is constructed piece-by-piece, directly, in CSR format with 3× 3 blocks.
As regards the resolution of a linear system whose coefficients matrix has
not a special structure, factorization is usually essential.
The factorization computational cost is proportional to the cube of matrix
dimension and the resolution of the system has a computational cost pro-
portional to the square of matrix dimension.
Anyway, the factorization of a sparse matrix involves too many zero ele-
ments and the non zero number grows up slowly when matrix dimension
increases. To avoid the fill-in of the matrix led by factorization, we made
use of incomplete Cholesky factorization. Indeed, it allows us to preserve
the number of non zeros of the initial matrix. In general, the factorized
matrix is not yet a block-one.
Anyway, if we make only a factorization of the non-zeros blocks, the reso-
lution of the system, at every time step, is anyway slow but the matrix is
still sparse and, moreover, the non zeros elements hold the positions taken
up before the factorization.
In this way, we entirely keep the structure of the matrix and, thus, the
original storage format.
Anyhow, our matrix is not only sparse, but also predominantly diagonally
dominant and with large dimension, whereby iterative methods are the
most convenient: they converge quickly to the solution of the problem and
they avoid the fill-in of the matrix during calculates.
In our case, the fastest serial method for system resolution, is Gauss-Seidel.
On the contrary, the Jacobi method and factorization are parallelizable.

6



DOI: 10.1685/CSC09255

A parallel code is our next step, in order to simulate realistic cases. For this
reason, we implemented also a modification of the incomplete Cholesky fac-
torization, in which we require that the LDU has the same pattern of A.
In our case, indeed, A is factorisable.

Let A ∼= LDU be the incomplete Cholesky factorization, and, fixed the
time step n , let be

X = Ü
n+1

Then, the method looks like

LDUXj+1 = bn+1 −AXj + LDUXj

that allows us a double control∥∥Xj+1 −Xj
∥∥ < ε∥∥bn+1 −AXj
∥∥ < ε

In this case we valuated the analytical solution of the problem 1 and we
compared it with the solution obtained using both Gauss-Seidel method
and incomplete Cholesky factorization.
Obviously, by the nature of the the matrix A, the Gauss-Seidel method
provides a solution in less time.
The Gauss-Seidel method has been appropriately validated by comparison
with the direct method of MATLAB (mldivide).

4.1. Numerical test

In this section, we validate the numerical model. For this reason, we
consider a learning problem, whose solution is known, and we compare it
with the numerical solution obtained by means of Gauss-Seidel.
Let Ω be a cube with edge L = 2 m, p-velocity vp = 8m/s, s-velocity vs =
6m/s, maximum frequency fmax = 5 Hz, then, by convergence conditions,
the smallest spatial step dh = 0.5m and the time step dt = 1.25E − 04s.
We suppose that the seismic source lies on the plane z = 1.
In our case, the input radiation is represented by the Gabor impulse

g(t) = exp

[
−ωp (t− ts)2

γ

]
cos [ωp (t− ts) + ψ]

where ωp = 2πfp, ts = 0.45 γ
fp

. The dominant frequency of the impulse is
fp = 0.45, ψ = π

2 and γ = 0.0066. If the mesh has 125 nodes, the matrix A
of 1 has the structure shown in Fig.2.
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Fig. 2. Sparsity of the matrix A.

It has 375× 375 = 140625 entries, but only 10135 are non zero.
The pattern is symmetric, but if we consider symmetric blocks associated
with boundary nodes (in red box of Fig. 2), their entries can be different.
For example, let be i = 37 and j = 38. The block (i, j) is 0.00104686458333 −0.00000000390625 −0.00000000390625

−0.00000000390625 0.00105208072917 −0.00000000390625
−0.00000000390625 −0.00000000390625 0.00108333072917


while the symmetric block (j, i) is 0.00104686458333 −0.00000000390625 −0.00000000000000

−0.00000000390625 0.00105208072917 −0.00000000390625
0.00000000000000 −0.00000000390625 0.00108333072917


Note that the spectral radius of the Gauss-Seidel iteration matrix is ρGS =
0.34973375855317.

In the Table 1, we report the values of numerical and theoretical so-
lutions, the relative error in 2-norm between them obtained varying the
number of time integrations (Time Iter.).

If we change nodes number of the mesh (Nodes) or number of time
integrations (Time Step), we obtain the solution in seconds (time/s) and
iterations (GS Iter) reported in the Table 2.
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Table 1. Error between analytical and numerical solution.

Time Iter. Error Theoretical Solution Numerical solution

100 4.942183521088E-003 1.671036533792E-003 5.199331317508E-003
200 1.210001712110E-002 5.813196916902E-003 1.344644672612E-002
300 1.700030576863E-002 1.142001371967E-002 2.047757582065E-002
400 2.286766208306E-002 1.792944314502E-002 2.783371121225E-002
500 2.994038160437E-002 2.527536467161E-002 3.368659346342E-002
600 3.843501644295E-002 3.389218363222E-002 3.676018980363E-002
700 5.093770791991E-002 4.461474660847E-002 3.975634523634E-002
800 6.797806578970E-002 5.847514713198E-002 4.544160832560E-002

The Table 2 shows that increasing the number of time step, ie the simula-
tion range, the iteration number of Gauss Seidel method is almost constant,
since the matrix iteration does not change over time.

Table 2. Seconds and Iterations taken by
Gauss-Seidel

Nodes Time Step time/s GS Iter

75 10 1.692 11
75 150 26.979 12
75 500 88.127 12
125 10 3.195 12
125 150 50.502 13
125 500 174.852 12
1000 10 24.686 8
1000 150 390. 8
1000 500 1321.83 8

Summarizing, for this kind of matrices the spectral radius of the Gauss-
Seidel iteration matrix is near to zero and the method converges very fast.
Literature is rich in algorithms optimized for sparse matrices, like GMRES,
GC. They store the sparse matrix in compact format starting from the ini-
tial full one.
In our case, we compute only non zero elements and we store them on the
fly in CSR format, because the matrix structure is known a priori.

5. Conclusion

Our final goal is to realize a 3D code able to describe the dynamics
of the interaction between the seismic radiation caused by an earthquake
and the near-surface geology. For this reason, in this paper we studied the
structure of the matrices deriving from seismological problem like 1 and
discretized by FEM.
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The Gauss Seidel method results the simplest but finest solver, because it
converges in a small number of iterations, as it is shown in Table 2. The
good results obtained do not justify the use of other solver like GMRES
and GC, but rather, they put forward the idea of an algorithm based on
hybrid block Jacobi-Gauss Seidel method.
The use of parallel computing make feasible to simulate seismological IBVP
more and more realistic, that requires a wide domain, a high frequency, the
introduction of dissipation term, and so on.
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