Communications to SIMAI Congress, DOLI: 10.1685/CSC09267
ISSN 1827-9015, Vol. 3 (2009) 267 (12pp)

Kernel- and CPU-level architectures
for computing and A\V post-production
environments

Walter Arrighettil?

' TECHNICOLOR Creative Services,
Digital Services for film and post-production,
via Tiburtina 1138, 00156 Rome, ITALY

2 “Sapienza” Universita di Roma,
Department of Electronic Engineering,
via Budossiana 18, 00184 Rome, ITALY

riemann.chaos@gmail.com

Abstract

High-Performance Computing has been improving for the last decades through more
parallelism and high-level machine instructions. Multimedia applications for Audio\Video
post-production also rely on fast algebraic data manipulation, which is though not fully
supported at CPU and 0s kernel levels yet. After a brief review on current hardware and
software implementations, several steering proposals towards future architectures for both
HPC and A\V post-production environments, as well as 0s human interfaces is sketched

here.

Keywords: High-Performance Computing, HPC, ISA, SSE, AVX, parallel
architecture, mathKernel, Digital Intermediate, DI, A/V post-production,
HDRI, grading, compositing, GUI, human interface, userspace, pipe

1. Introduction

Bare cpu arithmetic power for High-Performance Computing (HPC) has
been improving for the last decades both vertically and horizontally through
higher- and higher-level instructions sets (1SAs). Verticality refers here to the
increase of CPU clock speed, as well as system bus and network infractruc-
ture bandwidths. Horizontality refers to the massive increase in parallelism
at different levels: multi-core cpUs with longer pipelines, multi-processor
machines, up to cluster and GRID computing relying on more computing
nodes cooperating together to the same task (either connected in LANS,
WANS or across the Internet).

Multimedia applications for consumer, as well as for professional

Received 18/02/2009, in final form 15/06/2009
Published 31,/07/2009

Licensed under the Creative Commons Attribution Noncommercial No Derivatives


http://creativecommons.org/licenses/by-nc-nd/2.5/it/deed.en_GB

W.Arrighetti

Audio\Video post-production facilities, also rely on fast and massive al-
gebraic data manipulation which is though, except for a few cases, not
fully top-down supported throughout the complete computing workflow
(i.e. hardware to software).

Times are now mature for a new paralellized computation paradigm which
relies on both the processor’s 1SA and on the Operative System (0S) kernel
to provide services and applications (API-driven or not) with a unified HPC
“platform” [1].

This consideration is simply driven by the fact that common PC applica-
tions run, at low level, similar (if not identical) operations which scientific
computation demands — that is, more or less, numerical Linear Algebra,
which is almost everything we can actually compute.

As a matter of fact, applications with almost any purpose —from any
graphical user interface (GUI) to multimedia, from office to graphic design
suites, from Internet browsers to videogames— perform bilions of integer
or floating-point operations per second (FLOPS) on a regular basis which,
stripped off their high-level informative content, turns down to be either a
boolean search (like in databases), or the direct or inverse solution process
of a system of linear vector equations like

Ax=Db

or its matrix analogue, AX = B. Deepening a bit more in the inside, let us
consider a multi-media application like a video player as an example.

At high-level, A\V streaming consists in uncompressing and decoding a
binary file (usually real-time) and representing its raw stream as sound
and colour pixels on-screen. At the 0s level, that is usually performed by
parallel-tasked threads decoding different pieces of the same binary data
at the same time (NO access times apart). At low-level, there is the cpu
issuing SIMD (single instruction, multiple data) opcodes that perform many
instances of string substitution and discrete cosine transform (DCT), accord-
ingly. In a cluster environment (like a video post-production facility), the
scenario has another highest level, where one master node delivers pieces
of multimedia computation data to several computing nodes, each simulta-
neously processing different parts of the same data, as happens for render-
farms like that depicted in Fig. 1.

Abstracting away from the software/hardware layers (and the machine
code underneath), the logic level of such computations is, as previously
said, nothing more than finite-precision Boole’s and Linear Algebra: ma-
chine instructions basically do nothing more than shift, rotate, compare and
perform boolean and basic arithmetic operations on binady data stored in-
side the CPU’s registers.



DOI: 10.1685/CSC09264

-

An animation is submitted
to the render farm

iiiele

The master node queues the frames, evenly
distributing them between all nodes in the cluster

Fig. 1. Parallel multimedia computing paradigm of a render-farm.

2. Current CPU architectures

In the last decade, it has become clear that simply increasing cPU clock
speed is not a good strategy to raw computing performance: with present
microelectronic processes, raising the clock above 4GHz is a “no-go” due
to the overwhelming thermal drift produced by transistor gates’ commu-
tations. In order to counteract for that, more powerful cooling is to be
applied to the microprocessors themselves, requiring expensive and encum-
bring cooling. Currently, a steering toward parallelization is carefully pur-
sued, where several computing cores are hosted on the same die.

A first strategy is pure quantity: multi-processor computers are becom-

ing the standard in office and professional facilities, whereas each CPU fea-
tures inside whole replicee of its core p-architecture. Another strategy, as
depicted in Fig. 2, is employing more and longer pipelines: for each issued
instruction there are others already queuing up or even being partially pro-
cessed and executed (farther along the pipeline). As a side-effect internal
cache memories grow larger, and higher-level caches get integrated more
and more inside CPU cores (with Intel introducing, in late 2008, the Core™
i7 processor line, featuring RAM boards directly connected to the cpu).
A third strategy is to parallelize some of each pipeline’s stages: the
Arithmetic-Logic (ALU) and the Floating-Point Unit (FPU). On a n-bit
CISC p-architecture these components have some tens of packable regis-
ters, which store either one maximum-width value, or more than one with
decreased width: for example, a 128-bits register stores either one oct-word,
two quad-words (64 bits each), four double-words (32 bits), eight words (16
bits) or sixteen bytes (8 bits) — cfr. Fig. 3.

As far as the mathematical p-architecture is concerned, current man-
ufacturers usually deploy a continuation of their cpPUs’ 1SA for backward
compatibility’s sake: when a new family of processors is introduced, their



W.Arrighetti

Fig. 2. From multi-core to pipeline, to ALU/FPU microarchitectures.

Fig. 3. Packed registers in a ALU or FPU.

common ISA is a super-set of the previous one, where new instructions pro-
vide additional functionality (although their p-electronic implementations
are often complete re-engineerings rather than add-ons to existing ones)



DOI: 10.1685/CSC09264

3. Mathematical-oriented instruction sets

Referring to Fig. 4, Intel’s ISA continuations for integer and floating-
point (FP) instructions quickly steered from x87 16-bits math co-processors
to MMX first, then to SSEn extensions (currently at their 4" version),
featuring extensive parallel Boolean and arithmetic SIMD instructions on
packed registers, plus FP arithmetics and lots of opcodes, for all-in-one
dot-products and comparisons, [2]. Currently under development, Intel’s
Advanced Vector Extensions (AVX) and AMD’s SSE5 provide new en-
hancements to SIMD computing. Despite being used on in 64-bit architec-
tures, both will feature new 128- and 256-bits wide packable registers, 3-
and 4-operand instructions (like fused products or conditional/predicating
branches) and more high-level opcodes: from FP arithmetics, powers and
square roots, comparisons and max/min evaluations, up to optimized codes
for AES data encryption. Furthermore, the new super-sets are optimized for
internal parallelism of multi-core cPUs (quad- and up), [3].

Intel® AVX and AMD® SSE5
4-operand instructions, + 256-bit registers

2007-- SSE4 3-operand instructions

2003/6 SSE3/SSSE3  vector integer ops
+8 FP 128-bit registers

1999 +8 FP 128-bit registers

1997 MMX +8 integer 64-bit registers

1990s

+8 FP 80-bit registers

IA-16 or x86 full 16-bits ISA — NO floating-point (FP) '

1980s

Fig. 4. Timeline of Intel/AMD mathematical/multimedia-oriented 1SAs.

As depicted in Fig. 5, among the most powerful SIMD operations, there
are those specifically targeted to Linear Algebra, i.e. mainly dot and matrix
products. Since they can be combined among different levels of multidi-
mensional arrays and, at the same time, the distributivity of the arithmetic
operations performed is also programmable too (both in low- and high-



W.Arrighetti

level languages), these are prototypes for more general inner and outer
(tensor) products. In Computer Science instead, such are usually referred
to as fused multiply operations: given two ALU\FPU operations @& and ©®
and three suitably-sized arrays (tensors) X, Y and C, a fused operation is
something like Z = X © C @Y (with given algebraic precedence rules). In
the case of N x N matrix products, the above expression Z = XC + Y is
computed, coordinate-wise for 1<m,n<N, as:

N

Zmyn = E Cm,kThn + Ymn-
hh=1

Zmn = § CmkTh,n

h.k=1

Fig. 5. Example of SIMD outer product on a FPU.

Dot /outer products (or fused multiplications when they are parallel-
performed by a machine) are the basic mathematical operations hugely
performed by many general-purpose software, from multimedia codecs and
streamers (like the Fourier transforms needed by JPEG/MP3/MPEG formats
or DSP in general) to videogames, 3D render-farms, motion picture post-
production facilities, as well as HPC of course.

4. A digital imaging example

The way such kinds of massive computing capabilities are (or should be)
exploited in the multimedia industry (and above all that of digital imaging
and cinema) can be easily seen in the example of Fig. 6, where the picture is
a stack of several transparent layers whose every pixel is an active mapping



DOI: 10.1685/CSC09264

of the overlayed pixels beneath. The image’s final dynamic range (transition
from shadows to highlights —i.e. from over- to underexposure) and colour
look can get dramatically changed. This process, called colour grading (or
-correction), is obtained applying linear or nonlinear maps to each of the
pixel’s image, for each of its colour channels. These are typically red, green
and blue —hence the RGB colour-space— but others are often used, like
YUV-derived ones for most of the analogic/HD video world, or the c1E XYZ
for Digital Cinema. Whenever images are transferred between media (for
example from a film scanner or a digital camera sensor to a post-production
software, whence to either monitor, printed paper, or other film stock),
conversions from the source colour-space into either a variant of it or into
a different one are needed. For discrete spaces, those are usually performed
via a colour look-up table (LUT), often in the shape of a colour cube (aka 3D
LUT), which is a graphical representation of mapping some sample input
colours into a corresponding output palette, whereas intermediate colours
usually undergo to some aliasing like trilinear filtering — all for colour
reproducibility’s sake.

Fig. 6. A 3D LUT (left) and layer-based correction for still-image colour-grading (right).

Let (R, G,B) € [0,1*"” be the block-vector representing the original
pixels (sparated by colour channels) of a NxN image; colour-grading as a
layer uniformly mixing the colour channels of the global image is a block-
orthogonal matrix (in this case not depending on nearby pixel values), which
maps every pixel colour to a new one, (R/, G, B’), as:

R/ crInN Crc Crs R
G | =| Cqr ccIn CgB G|,
B’ Cgr Cgc cBlN B



W.Arrighetti

where cR, cg, cg € Ry are constants for occasional shifting the three pure
colours and I is the NxN identity matrix.

In practice this operation, if performed on a camera- or scanner-generated
picture, corresponds to millions of similar fused multiplications on each of
the image pixels (channel by channel): a perfect meal for nowadays number-
crunching cpUs. Even nonlinear examples (like photo-realistic filters or vi-
sual effects) do not bias too much from that simple paradigm (as far as
the mathematical model is concerned) — despite many of them are applied
to the some discrete linear transforms (like Fourier’s, or the wavelet one
employed in D-Cinema’s JPEG2000 and the REDT™ CAMERA formats). Last
but not least, nowadays digital pictures “live” in a high dynamic range
(HDR) 3-dimensional colour-space, i.e. with integer or “float”, 10- to 32-
bits-per-channel, in order to keep more information on both under- and
over-exposed regions. That is where CPU registers’ width and their FP ca-
pabilities are becoming more and more of a turning point.

5. Motion picture post-production and the Digital Intermediate

445, 445, 445

.

AD Test Image e KODAK Digital LAD Test Image

Fig. 7. First step in a DI workflow: logarithmic-to-linear colour-space conversion, in
company of the beautiful Marcy (source scanned from internegative film).

Adding motion to high-quality HDR images —currently up to “8K” reso-
lution, i.e. 8192x6226 pixels— (like the DPX file sequences produced by a film
scanner and shown at 24fps) leads to the heart of the cinema industry’s Dig-
ital Intermediate (D1) workflow, where HPC is essential to deliver, because
colour grading and the other rendering processes involved (from transcoding
to visual effects, to pure 3D, to downsampling) need to be performed real-
time, still taking weeks to complete for a full-length movie, [4]-LustreCM.
After being either scanned from film stock, or directly transcoded from a
digital videocamera (like Arri’s or REDT™’s), frame-image sequences need
to be digitally cleaned (to reduce chromatic noise and film imperfections)



DOI: 10.1685/CSC09264

and then conformed (via edit-decision lists, or EDLs). Colour-space con-
version of digital images, from logarithmic ones (preserving film density
information) to linear ones, are massively parallelizable operations, preced-
ing the actual colour grading process. The latter involves Linear Algebra
operations too, eigher globally (primary grading) and locally (secondary
grading) performed at individual frames or whole clips, cfr. §4 and Figs.
7-8. In the end, the whole clips are prepared for other visual effects (like
3D graphics in some cases) and the work is finally rendered (and option-
ally downsampled to a D-Cinema package file for digital delivery), or back
“lin-to-log” colour-space converted for film-out printing.

Fig. 8. Next steps in the DI: 3D sculpturing of a puppet to be renderd (left) and com-
positing of 3D models over a real scene (right). Courtesy of Lucasfilm.

6. Proposal for math-oriented microarchitectures

In order to further improve computational requirements of both scien-
tific and non-scientific facilities (like those specialized in graphics, multi-
media, and D-Cinema for example), future CPU microarchitectures should
seriously consider providing more targeted opcodes for mathematical in-
structions.

Apart from improving parallelism in SIMD and MIMD opcodes (for massive
matrix and dot product operations) as well as widening internal cache mem-
ories, support for two-dimensional registers and inclusion of cryptographic
and expression-matching opcodes is required to strenghten databases and
data-mining applications, as well as providing faster and more secure cryp-
tography: generation and comparison of keys and hashes all within the cpPu
and its caches leverages overall security, at least for smaller data chunks.

Another feature that scientific computing would directly benefit from is
wider IEEE-754 floating-point packable registers (512-bits and up), im-
proved native support for opcode-level complex-numbers arithmetics and



W.Arrighetti

basic nonlinear functions: integer powers, roots’ and logarithms’ (principal)
branches, trigonometric and hyperbolic evaluation, cartesian-to-polar con-
version, and so on. Availability of hardware-coded mathematical constants
would also be a plus. Complex-number arithmetics and exponentials, in
particular, require little variations in the internal logic circuitry, yet pro-
viding many improvements even in non-scientifical applications (like the
DFT and FFT deeply used in multimedia). Despite many low- and high-level
languages support complex numbers with few emulation efforts by the cpU,
implementing them at the 1SA level would ease many (cos z, sin z)-like map-
pings off the compiled code. The ideal situation is being able to issue an
iterated assembly-code sequence like

cMUL (cINV (cPOW(PI,IMAG)),cSQRT (cDIV(cADD(1,-cPOW(2,cSINH(XAX)
)) ,cLOGE(cLOGE (ADD (CONJ (XAX) ,-cMUL (IMAG,cSQRT(5))))))))

to compute (at least the principal branches of) expressions like:

1 1 —sinh? 2
— - — (—1.53280E — 3,.53281EF — 3).
m \/log log (z — Z\/g)

In many consumer to high-end equipments there is currently a trend
to exploit the massive computing power of a Graphics Processive Units
(Gpus), whose core market is that of 3D videogames. Computingwise, a
GPU is a massively-parallel microprocessor (now featuring fastest and dedi-
cated own RAM, wide buses, registers and high clock speeds). Despite GPUS
of the past having specialized internal logics, making them unsuitable for
generic-purpose HPC, recent ones do not: e.g. nVIDIA manufactures multi-
core 256-bits GPUs, also motherboard-integrated. Many scientific applica-
tions, even large-scale GRID projects like Folding@home, employ techniques
borrowed from algorithmic computer graphics to benefit from their charac-
teristics. Professional graphic adapters are (and will be more and more) en-
gineered to manipulate large-sized HDR images (which means wide-register
support for massive integer and FP number-crunching), whereas their pixel-
and vertex-shaders sub-circuitries are completely pre-programmable, which
means that tiny bits of machine-codes can be ingested within their caches
and serially issued by single opcodes for fastest execution: that’s exactly in a
mathematical-oriented CPU’s needs to run critically fast looped algorithms.

7. Proposal for a tentative mathKernel architecture

In the last section, conclusions are drawn regarding another critical is-
sue: a OS kernel able to bridge the gap between hardware and software,
which is not only the way to optimize HPC from high level, but also to ease

10



DOI: 10.1685/CSC09264

or even void architecture transitions for the developer’s (and, ultimately, the
user’s) point of view. As depicted in Fig. 9 a typical kernel, as Linux’s, fea-
tures a low-level virtual memory environment —the kernel-space— where
basic hardware N0, thread and memory management take place, and the
userspace, providing common frameworks for applications to run and rely
on (like, ultimately, deemons and standard libraries).

Hardware I/0 & memory management Stacks, Schedulers & Logs \
Virtualization (HAL)

Security: process protection
Boolean & string manipulation
Device drivers, C.L.I. Security: cryptography

Interrupts, system calls

Virtual memory & Filesystems

Stream I/O ports/sockets/files/pages

Device drivers, C.L.I. e Advanced Stream I/0 \
Y Networking stack

tandard libraries / API
standard Hibraries s hreads/Process management & SMP

S3DIAIDS dIseq B suolduUNy

Damons (services)

Servers (File, FTP, Web, DB, Graphics,...)

Dynamic Libraries (DLLs) & Applications Framebuffer & graphic primitives/

Fig. 9. Placement of the mathKernel in the simplified paradigm of a 0s/kernel archi-
tecture, depicting just a bunch of its major features.

What is here referred to as mathKernel is a kernel module, loaded at
boot time, providing low-level mathematical techniques to parallelize com-
putations (even when issued by separate threads) as well as high-level math-
ematical functions. As stated at the beginning, many common applications
(from multimedia, to Internet, to graphic design, to videogames) heavily
rely on mathematical capabilities to run but, in fact, each one provides
its own set of mathematical libraries, usually running in the userspace. A
single framework of mathematical functions, common to every applications
has, instead, many advantages. First of all, its source code can be improved,
recompiled, relinked into the kernel and be immediately available for ev-
ery applications to benefit (so no individual application update is needed
when just the mathematical code is). Secondly, running the same set of
mathematical functions (although each application high-level tailors it to
its own needs and specific —even proprietary— algorithms) means that
they can be better managed and parallelized in kernel-space. Executing
different-tasked threads in parallel is, in fact, uncommon even for mod-
ern 0Ss, because underlying code coming from different services/libraries
in userspace, is usually unhomogeneous and hardly parallelizable.

As a last proposal, the mathKernel could be integrated at the Linux

11



W.Arrighetti

filesystem level too: a series of pipe devices are set up for different algo-
rithms such that piping MathML expressions into them activates the corre-
sponding kernel-space algorithm streaming out the results. For example, let
/dev/math be the mathKernel’s device folder, containing pipes to partic-
ular mathematical functions, procedures, algorithms or methods, like det,
linsolve, GCD, ODEsolve, DFT, integrate, factor, etc. T'wo bash com-
mands like those below send a discrete time-domain signal stored in a XML
file (which may also contain metadata parameters about the DFT algorithm
to apply) to the Discrete Fourier Transform pipe (file /dev/math/DFT) and
retrieve “on the background” its DFT, outputting to another file:

cat time-domain.xml > /dev/math/DFT &
(cat </dev/math/DFT > spectral-domain.xml &&
echo -n "The mathKernel computed a DFT.") &

Integration scenarios in a Linux GUI like xgl are countless: examples in-
clude drag-n-dropping a Wolfram Mathematica notebook including already-
graphed plots over specific algorithm pipe icons, automatically popping up
the output graph whenever ready, with all mathematical computations op-
timized for the specific 1SA, transparently parallelized in kernel-space and
rendered in a new graph by the Mathematica front-end. Consider also drop-
ping any files over the corresponding cryptographic-pipe icon to retrieve
their AES-encrypted versions out from a specific pipe-folder.

High-level services might also be available regarding motion-picture indus-
try (as sketched in §5). A full DI movie, composed by frame-file sequences
(as DPXs), multi-channel audio and XML files for EDLs, grading/compositing
projects, subtitles and a 3D film LUT, would be converted into a D-Cinema
package (one DCP file) by simply drag-n-dropping its overall-project folder
onto the corresponding high-level conforming icon: all the workflow would
be automatically started in kernel-space.

REFERENCES

—_

. A. S. Tanenbaum, Modern Operative Systems, 3rd ed., Pearson, 2007.
2. Intel’s Technology website, www.intel.com /technology/.

3. Intel AVX Programming Reference, Intel’s software network,
sofwareprojects.intel.com /avx/.

4. J. James, Digital Intermediates for Film and Video, Focal Press, 2005.

5. Autodesk® Color Management, autodesk.com/lustre-documentation.

12



	Introduction
	Current CPU architectures
	Mathematical-oriented instruction sets
	A digital imaging example
	Motion picture post-production and the Digital Intermediate
	Proposal for math-oriented microarchitectures
	Proposal for a tentative mathKernel architecture

