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Abstract 

The risk of collision is one of the crucial factor for the applications of Ekranoplans 
in civil transportation.  In fact, the extremely low flight altitude of these aircraft 
increases dramatically the chances of interference between their flight path and the 
multitude of obstacles populating the surrounding area.  Examples of those potential 
obstacles are: ships, small boats, and stumbling blocks. 

In this work we consider the optimal collision avoidance problem between a 
cruising Ekranoplan and a steady obstacle located on the ground.  The following 
assumptions are employed: (i) initially the Ekranoplan is moving in a quasisteady 
levelled cruise trajectory; (ii) after the avoidance manoeuvre a recovery manoeuvre is 
executed by the aircraft to return to the initial cruise path; (iii) both the avoidance 
manoeuvre and the recovery manoeuvre lie on the same vertical plane identified by 
the initial cruise trajectory.  The investigation of the collision avoidance performances 
on the longitudinal flight is encouraged by the relatively large quasi-flat turn radius 
of the Ekranoplans. 
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1. Introduction. 

The risk of collision is one of the crucial aspects for the applications of 
Ekranoplans in civil transportation.  In fact, the extremely low flight 
altitude of these aircrafts increases dramatically the chances of 
interference between their flight path and the multitude of obstacles 
populating the surrounding area.  Examples of those potential obstacles 
are: ships, small boats, and stumbling blocks. 

In this work we investigate the optimal collision avoidance problem 
between a cruising Ekranoplan and a steady obstacle located on the 
ground.  The following assumptions are employed: (i) initially the 
Ekranoplan is moving along a quasisteady levelled cruise trajectory; (ii) 
after the avoidance manoeuvre a recovery manoeuvre is executed by the 
aircraft to return on the initial cruise path; (iii) both the avoidance 
manoeuvre and the recovery manoeuvre lie on the same vertical plane 
identified by the initial cruise trajectory.  The investigation of the 
collision avoidance performances on the longitudinal flight is encouraged 
by the relatively large quasi-flat turn radius of the Ekranoplans. 

The approach to the problem considered, is to maximize wrt the 
controls the timewise minimum distance between the aircraft and the 
obstacle.  This yields to a maximin problem or Chebyshev problem of 
optimal control, which is not solvable in a direct way.  Hence, a technique 
is performed to transform the Chebyshev problem into a Bolza problem 
(Ref. 1).  Once reduced in this form the optimization problem can be 
solved numerically applying the multiple-subarc sequential gradient-
restoration algorithm (Refs. 2-3). 

The main target of this research is to determine the relationship 
between the optimal avoidance maneuver and the control to execute it.  
In turn, this relationship is basilar to the development of a guidance 
scheme capable to  approximate the optimal trajectory in real time. 

It is worth to notice that the peculiar aerodynamic characteristics of 
the Ekranoplans joined to their relatively weak manoeuvrability make 
this application of optimal control techniques particularly challenging.  
We believe that the results of the present work would lead the future 
investigations toward a suitable collision avoidance strategy. 
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2. Problem Description. 
The motion of the aircraft is described considering the following 

assumptions: (i) the flight path lies in a vertical plane; (ii) the aircraft is 
a particle of constant mass; (iii) the Earth is flat; (iv) the Earth-fixed 
coordinate system is inertial.  Under these conditions, the equations of 
motion can be written as 

x′ = V cosγ, (1a) 
h′ = V sin γ, (1b) 
V′ = (T/m)cos(α + δ) – D/m – g sinγ, (1c) 
γ′ = (T/mV)sin(α + δ) + L/mV – (g/V) cosγ. (1d) 

In Eqs. (1) appear the following quantities: longitudinal distance x, 
altitude h,  velocity V, path inclination γ,  mass m, acceleration of gravity 
g, thrust inclination angle δ, and angle of attack α.  Also, the prime ′ 
denotes derivative with respect to the actual time t.  The thrust T, the 
drag D, the lift L, and the weight W are forces acting on the aircraft.  
These forces can be represented by the functional relations  

T = T(h, V, β) ≅ β Tmax(h, V), (2a) 
D = D(h, V, α), (2b) 
L = L(h, V, α), (2c) 
W = mg,  (2d) 

where β is the thrust setting.  Note that because of the small variations 

of the flight altitude, on this problem, the density ρ is imposed constant. 

2.1. Inequality Constraints. 
For several cases, initial numerical results have shown that the 

collision avoidance maneuver requires full thrust for the complete 
duration of the maneuver, which means we can enforce 

β = 1 . (3) 
To prevent the occurrence of the aerodynamic stall we want the angle of 
attack α(t) ranging between a minimum value and a maximum value 

αmin ≤ α ≤ αmax , (4a) 
moreover, to model the rotational inertia of the vehicle, we impose that 
the time rate α′(t), is subject to the similar constraint 

− α′max ≤ α′ ≤ α′max , (4b) 
where αmax, αmin, α′max are prescribed positive constants.  The above 
inequalities can be converted into equalities via the following 
nonsingular transformation: 
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α = (1/2) (αmax + αmin) + (1/2) (αmax - αmin) sinη , (5a) 
η′ = [2α′max/(αmax - αmin)] sinw, (5b) 

in which η(t) denotes an auxiliary state variable and w(t) denotes an 
auxiliary control variable.  From Eqs. (5)  we get 

α′= α′max cosη sinw, (6) 
which implies that any pair of functions η(t), w(t) consistent with Eqs. (5) 
satisfies automatically the inequalities (4). 

The transformation (5) has two advantages: (i) it is nonsingular; (ii) 
the angle of attack boundary is reached tangentially, regardless of the 
value of the auxiliary control.  It is important to observe that these 
advantages are obtained at a price.  In fact as the angle of attack moves 
toward its upper or lower boundary, the available α′-range shrinks 
proportionally to cosη, vanishing at the upper boundary or lower 
boundary. 

Eqs. (5), allow us to rewrite the system equation of the ekranoplan as 
x′ = V cosγ, (7a) 
h′  = V sin γ, (7b) 
V ′  = (βTmax/m)cos(α + δ) – D/m – g sinγ, (7c) 
γ′ = (βTmax/mV)sin(α + δ) + L/mV – (g/V) cosγ, (7d) 
η′ = [2α′max/(αmax - αmin)] sinw, (7e) 

where 
α = (1/2) (αmax + αmin) + (1/2) (αmax - αmin) sinη. (7f) 

In the transformed system (7), the state variables are x(t), h(t), V(t), γ(t), 
η(t); the new control variable is w(t).  Once η(t) is determined, the 
original control α(t) can be recovered using Eq. (7f). 
 

2.2. Potential Collision. 
If the aircraft moves along a leveled trajectory with constant speed, its 

motion is described by the relation 
x(t) = x0 + V0 t , (8a) 
h(t) = h0 , (8b) 

where the subscript 0 denotes the quantities at the initial time t = 0.  We 
assume that the obstacle is steady and located at the same initial 
altitude of the aircraft and at an initial distance d0 from it 

x*(t) = x0 + d0 , (9a) 
h*(t) = h0 . (9b) 

Given the initial velocity of the aircraft V0, and the initial distance of the 
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obstacle d0, the collision occurs if the following relations are satisfied at 
some forward time σ > 0:  

x(σ) = x*(σ) , (10a) 
h(σ) = h*(σ) , (10b) 

with the implication that 
V0 σ = d0 . (11) 

 
3. Optimization Problem. 

For collision avoidance under emergency conditions, the best strategy 
is to maximize wrt the controls the timewise minimum distance between 
the aircraft and the obstacle.  At the maximin point of the encounter, the 
distance between the ekranoplan and the obstacle has a minimum wrt 
the time, which occurs when the relative position vector is orthogonal to 
the relative velocity vector.  In this way, we obtain an inner boundary 
condition to be satisfied at the maximin point separating the two main 
branches of the maneuver: the avoidance branch and the recovery 
branch.  As consequence, a one-subarc Chebyshev problem can be 
transformed into a two-subarc Bolza problem solvable via the multiple-
subarc sequential gradient-restoration algorithm (SGRA). 

With the purpose to determine the inner boundary condition 
mentioned above, let the distance between the host aircraft and the 
obstacle be written as 

d = √ [(x – x*)2 + (h – h*)2] (12a) 
and its time derivative is  

d′  = (1/2) [(x – x*) (x – x*)′ + (h – h*) (h – h*)′]. (12b) 
Let also 

D = (1/2) d 2 = (1/2) [(x – x*)2 + (h – h*)2] (13a) 
denote the squared distance function whose time derivative is  

D′ = (x – x*) (x – x*)′ + (h – h*) (h – h*)′. (13b) 
From (12b) and (13b) result that the conditions 
d ′= 0   and  D′  = 0  (14a) 

are reached simultaneously when 
(x – x*) (x – x*)′ + (h – h*) (h – h*)′ = 0, (14b) 

that is, when (see Eqs. (8)-(9) ) 
(x – x*) V cos γ + (h – h*) V sin γ = 0, (14c) 

namely, when the relative position vector is orthogonal to the relative 
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velocity vector. 
In the actual time domain, let θ1 = σ denote the time length of the 

avoidance subarc; let θ2 = θ - σ denote the time length of the recovery 
subarc; let θ = θ1 + θ2 denote the assigned time length of the entire 
maneuver.  The two subarcs are connected to one another at the maximin 
point where the inner boundary condition (14c) is satisfied. 

In order to bring the equations of the relative motion into the format 
required by the multiple-subar SGRA, it is necessary to normalize the 
interval of integration to unity.  Having established that the time length 
of the first subarc is θ1 and the time length of the second subarc is θ2 , we 
introduce now a transformation from the actual time t to the virtual time 
τ rendering the virtual time length of each subarc equal to 1.  More 
precisely, the time transformation is 

subarc i = 1, τ = t / θ1, 0 ≤ τ ≤ 1, 0 ≤ t ≤ θ1, (15a) 
subarc i = 2, τ = 1+(t - θ1)/ θ2, 1 ≤ τ ≤ 2, θ1 ≤ t ≤ θ. (15b) 

3.1. Performance Index. 
For final time θ given, the optimization problem consists in 

maximizing wrt the new control w(t) and parameter θ1 , the distance 
function at the point where the inner boundary condition is satisfied. 

In the actual time domain, the problem is 

θθ
θ → θ

11
1 ( ), ( ), 

max  ( )         min  - ( )
w tw t

D 1D

D

. (16a) 

Let F(t) be the one-index representation, in the actual time domain, of a 
generic function of the time F, and let F(τ, i) be its correspondent two-
index representation in the virtual time domain, with i = 1 for the first 
subarc and i = 2 for the second subarc.  In the virtual time domain, the 
problem becomes 

τ θτ θ
→

11 ( , ), ( , ), 
max  (1,1)         min  - (1,1) ,

w iw i
D  (16b) 

with D(1, 1) meaning D(τ, i) evaluated at the end (τ = 1) of the first 
subarc (i = 1).  With the introduction of this new two-index 
representation the one-subarc Chebyshev problem has been replaced 
with a two-subarc Bolza problem. 
 

3.2. Penalized Performance Index. 
In order to prevent the undershooting of the initial altitude h0 the 
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performance index (16b) is replaced with the following penalized 
performance index: 

min  [−D(1, 1) + kP], (17a) 
where k > 0 is a suitable penalty constant and P is the penalty functional 

θ + θ∫ ∫
1 1

2 2
1 2

0 0
 = (τ,  1)dτ (τ,  2)dτP E E . (17b) 

In the above relation E(τ, i) measures the violation of the altitude 
threshold and is defined as follows: 

E(τ, i) = h0 - h(τ, i) , if   h > h0 , (17c) 
E(τ, i) = 0 , if   h ≥ h0 . (17d) 

3.3. Differential Constraints. 
Due to the normalization of the interval of integration, the equation of 

motion, can be rewritten as 
x = θi [V cosγ], (18a) 
h = θi [V sin γ], (18b) 
V = θi [ (βTmax/m)cos(α + δ) – D/m – g sinγ],  (18c) 
γ = θi [ (βTmax/mV)sin(α+ δ) + L/mV – (g/V) cosγ],  (18d) 
η= θi [2α′max /(αmax - αmin) sinw], (18e) 

where the dot superscript denote a derivative wrt the virtual time τ, the 
index i = 1,2 denote the subarc, and 

α = (1/2) (αmax + αmin) + (1/2) (αmax - αmin) sinη. (18f) 

3.4. Boundary Conditions. 
The initial conditions are x(0,1) = 0, h(0,1) = h0, V(0,1) = V0,           

γ(0,1) = 0, η(0,1) = η0 = sin-1{[2α0 - (αmax + αmin)] / (αmax - αmin)}, with h0, V0, 
γ0, α0 specified. 

The continuity conditions at the interface, impose that the state 
variables at the end of the first subarc have the same values at the 
beginning of the second subarc.  At the interface, the inner boundary 
condition is 

D (1,1) = 0. (19) 
The final conditions are h(1,2) = hθ , γ(1,2) = γθ = 0, with hθ, γθ,  specified. 
 

3.5. Bolza Problem. 
In conclusion, the Bolza problem of aircraft collision avoidance can be 

formulated as that of minimizing the performance index (17), subject to 
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the differential constraints (18), the initial conditions, the continuity 
conditions, the inner boundary condition (22), and the final conditions. 

With the actual final time θ given, the unknowns are the state and 
control variables of each subarc x(t, i), h(t, i), V(t, i), γ(t, i), η(t, i), w(t, i), 
plus the time parameter σ.  With these functions known, the angle of 
attack α(t, i) of each subarc can be recovered via (18f). 
 
4. Algorithm. 

In this research, the multiple-subarc sequential gradient-restoration 
algorithm (SGRA) is applied to solve the collision avoidance problem 
involving an Ekranoplan and an obstacle located on the surface. 

The multiple-subarc SGRA is an important extension of the single-
subarc SGRA. The single-subarc SGRA was developed by Miele et al 
during the period 1968 to 1986.  It has proven to be a powerful tool for 
solving optimal trajectory problems of atmospheric and space flight.  
Applications and extensions of this algorithm have been reported in the 
US, Japan, Germany, Spain, and other countries around the world; in 
particular, a version of this algorithm is used at NASA under the  name 
SEGRAM, developed by McDonnell Douglas Technical Service (Ref. 14). 

While the single-subarc SGRA deals with the optimization of a single 
system with initial and final boundary conditions, the multiple-subarc 
SGRA deals with the optimization of multiple systems with initial, final, 
and inner boundary conditions.  In the multiple-subarc SGRA (see Refs. 
2-3), a large and complicated overall system is decomposed into several 
subsystems along the time domain: each subsystem, having relatively 
simple properties, corresponds to a subarc; the connection between 
consecutive subsystems takes place via inner boundary conditions.  

We note that, for stiff systems, it might be convenient to convert a 
single-subarc problem into a multiple-subarc problem with continuous 
inner boundary conditions.  Indeed, proper increase of the number of 
subarcs can enhance considerably the robustness of the solution. 
 
5. Data for Example. 

The ekranoplan considered is an Alekseev A-90 Orlyonok powered, in 
cruise conditions, by a Kuznetsov NK-12MK turboprop engine with 
contra-rotating propeller. 
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The aerodynamic forces involved in the longitudinal dynamic are lift 
and drag, which are controlled via the angle of attack α.  The angle of 
attack is bounded between the values αmax = 10 deg and αmin = -10 deg.  
To model the rotational inertia of the aircraft, the time rate of the angle 
attack is limited imposing α′max = 3 deg/s.  In ground effect flight, the 
aerodynamic coefficients are strongly dependent on the distance h 
between the ekranoplan and the water surface (Ref. 7). 

The thrust expression considered for the turboprop engine is 
= Π ≤ ≤P maxη / ,          50 m/s    148 m/sT V V , (20) 

where V [m/s] is the velocity, ηP = 0.85 is the propeller efficiency, and 
Πmax = 15000 [hp] is the maximum engine power.  Since the first runs, 
the results are such that the thrust value get its maximum value, for this 
reason we enforce that the avoidance maneuver and recovery maneuver 
are both operated at maximum thrust setting, β = 1.   

At the beginning of the collision avoidance maneuver, the ekranoplan 
is in quasisteady leveled flight.  Specifically, the initial conditions are    
x0 = 0, h0 = 2.5 m, V0 = 105 m/s, γ0 = 0, α0 = 1.17 deg.  After a transient 
period, at the end of the collision avoidance maneuver, the host aircraft 
recovers the leveled path.  Specifically, the final conditions are hθ = 2.5 
m, γθ = 0 deg. 

The obstacle initial distance d0 is assumed ranging from 250 m to 
1250 m.  Namely we consider the following obstacle coordinates 

250 m ≤ x* ≤ 1250 m, (21a) 
h* = 2.5 m. (21b) 

 
6. Numerical Results. 

The numerical computation of the optimal trajectories for collision 
avoidance was done using the multiple-subarc sequential gradient-
restoration algorithm (SGRA).  From initial results we found that, in any 
case, the avoidance maneuver tends to be performed with maximum 
thrust, this is why we impose the setting control at its maximum value   
β = 1.  Under this assumption the only remaining control is the angle of 
attack α(t).  The task of the multiple-subarc SGRA is to maximize, wrt 
the control α(t) and the time parameters σ, the timewise minimum 
distance between the ekranoplan and the obstacle: the vehicle is flying 
along a cruise leveled trajectory and the obstacle is steady on the sea 
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surface.  The numerical results are shown in Table 1 and Figures 1-2. 
Table 1 show the effect of the initial distance d0 on the maximin 

distance d(σ).  Also the correspondent maneuver time θ and the maximin 
time σ are reported.  As the initial distance varies from 250 m to 1250 m, 
the maximin distance increases from 8.5 m to 370.7 m.  In other words, 
an earlier detection of the obstacle will provide a larger safety margin for 
the ekranoplan. 
 

Table 1.  Effect of the initial distance on the maximin distance. 
 

d0 [m] d(σ) [m] σ [s] θ [s] 
  250     8.5   2.39 10 
  500   56.1   4.93 20 
  750 156.3   7.94 25 
1000 297.0 11.91 30 
1250 370.7 19.54 30 

 
In Figs. 1-2 are presented the main results of the collision avoidance 

maneuver for an initial distance d0 = 1250 m.  Fig. 1 shows the collision 
avoidance trajectory.  Fig. 2 reports the time history of the control α(t).   
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Figure 1.  Optimal trajectory, d0 = 1250 m. 
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Figure 2.  Time history of the angle of attack, d0 = 1250 m. 
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6. Conclusions. 

In this work we investigate the optimal collision avoidance problem 
between a cruising Ekranoplan and a steady obstacle located on the 
ground.  The following assumptions are employed: (i) initially the 
Ekranoplan is moving in a quasisteady levelled cruise trajectory; (ii) 
after the avoidance manoeuvre a recovery manoeuvre is executed by the 
aircraft to return to the initial cruise path; (iii) both the avoidance 
manoeuvre and the recovery manoeuvre lie on the same vertical plane 
identified by the initial cruise trajectory.  The investigation of the 
collision avoidance performances on the longitudinal flight is encouraged 
by the relatively large quasi-flat turn radius of the Ekranoplans. 

The results show that the angle of attack changes with the maximum 
speed.  Eventually, for the cases with longer initial distances from the 
obstacle, the positive angle of attack bound is reached, meaning the 
ekranoplan tends to reach the stall conditions.  The characteristics of the 
control that we have found, make it particularly suitable for guidance 
purposes. 

In this initial phase of our research we have tested the goodness of the 
approach employed.  A three-dimensional avoidance trajectory should be 
investigated to compare jumping performances vs. quasi-flat turning 
performances. 

 11 



 
REFERENCES 

1. Miele, A., and Wang, T., Optimal Collision Avoidance in Aerospace 
under Emergency Conditions, Paper IAC-05-C1.5.01, 55th 
International Astronautical Congress, Fukuoka, Japan, 2005. 

2. Miele, A., and Wang, T., Multiple-Subarc Sequential Gradient-
Restoration Algorithm, Part 1: Algorithm Structure, Journal of 
Optimization Theory and Applications, Vol. 116, No. 1, pp. 1-17, 
2003. 

3. Miele, A., and Wang, T., Multiple-Subarc Sequential Gradient-
Restoration Algorithm, Part 2: Application to a Multistage Launch 
Vehicle Design, Journal of Optimization Theory and Applications, 
Vol. 116, No. 1, pp. 19-39, 2003. 

4. Rishikof, B. H., McCormick, B. R., Pritchard, R. E., and Sponaugle, 
S. J., SEGRAM: A Practical and Versatile Tool for Spacecraft 
Trajectory Optimization, Acta Astronautica, Vol. 26, Nos. 8-10, pp. 
599-609, 1992. 

5. Miele, A., and Wang, T., Maximin Approach to the Ship Collision 
Avoidance Problem via Multiple-Subarc Sequential Gradient-
Restoration Algorithm, Journal of Optimization Theory and 
Applications, Vol. 124, No. 1, pp. 29-53, 2005. 

6. Miele, A., and Wang, T., Optimal Trajectories and Guidance Schemes 
for Ship Collision Avoidance, Journal of Optimization Theory and 
Applications, Vol. 129, No. 1, 2006. 

7. Gatto, C., Study on the Dynamic Behavior of an Ekranoplan, Master 
Thesis, University of Palermo, 2004. 

8. Frazzoli, E., Mao, Z. H., Oh, J. H., and Feron, E., Resolution of 
Conflicts Involving Many Aircrafts via Semidefinite Programming, 
Journal of Guidance, Control, and Dynamics, Vol. 24. No. 1, pp. 79-
86, 2001. 

9. Menon, P. K., Sweriduk, G. D., and  Sridhar, B., Optimal Strategies 
for Free-Flight Air Traffic Confliction Resolution, Journal of 
Guidance, Control, and Dynamics, Vol. 22. No. 2, pp. 202-211, 1999. 

10. Clements, J. C., The Optimal Control of Collision-Avoidance 
Trajectories in Air-Traffic Management, Transportation Research,  
Vol. 33B, No. 4, pp. 265-280, 1999. 

11. Nocedal, J., and Wright, S.J, Numerical Optimization, Springer 
Series in Operations Research, Springer Verlag, New York, NY, 
1999. 

 12 

C. Grillo et al


