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In the present wok, an efficient stochastic Monte Carlo (MC) algorithm is presented for the 

numerical solution of the dynamic population balance equation (PBE) in batch particulate processes 

undergoing simultaneous particle aggregation, growth and nucleation.  

The general uni-variate population balance equation for a batch particulate system can be written 

as follows: 
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where n(V,t)dV denotes the number of particles per unit volume in the size range [V, V+dV]. G(V) 

and S(V,t) are the particle volume growth rate and the particle nucleation rate, respectively and 

(V,U) is an aggregation rate kernel for particles of volumes V and U. In general, Eq. (1) will 

satisfy the following initial condition: ( ) ( )0n V,0 n V= , where n0(V) is the initial number density 

function. If the value of the number density function at the minimum particle volume, n(Vmin, t), is 

known, the corresponding boundary condition for Eq. (1) takes the following form: 

( ) ( )min 1n V , t n t= . 

The general bi-variate PBE for a batch particulate system is given by: 
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In accordance to the uni-variate PBE, n(V,x, t)dVdx denotes the number of particles per unit 

volume in the size range [V, V+dV] having the property x in the range [x, x+dx]. Furthermore, 



 

 

(V, U,x,z) denotes the aggregation rate kernel between particles with volumes V and U and 

internal properties x and z, respectively. The initial condition of Eq.(2) is  0n(V,x,0) n (V,x)=  and 

the boundary conditions that may be used are xn(0, x, t) n (x, t)=  and Vn(V,0, t) n (V, t)= . 

The stochastic Monte Carlo (MC) method is based on the principle that the dynamic evolution of 

an extremely large population of particles (e.g., 1012) can be followed by tracking down the 

corresponding changes or events (i.e., growth, aggregation, nucleation) occurring in a smaller 

number of sample particles, (e.g., 105). Initially, the particle volume and/or the second internal 

property domains are divided into a number of discrete volume intervals using a logarithmic 

discretization rule. Subsequently, each particle in the sample population is assigned to an 

appropriately selected volume, Vi, and an appropriately selected value of the internal property, xi, so 

that the particle array at time zero, Ns(0), closely represents the initial distribution, according to the 

“inverse transform method” (Rubinstein, 1981). Once all the particles in the sample population have 

been assigned to randomly selected volumes, the MC algorithm is initiated and the effects of 

particle aggregation, growth and nucleation mechanisms on the dynamic evolution of the particle 

population are stochastically simulated in a consecutive series of variable-duration time steps.  

In problems involving particle aggregation, the time step can be determined in terms of the 

number of aggregation events, Nagg, that take place (Gooch et al., 1996). According to the above 

procedure, the time required for the occurrence of the duration of Nagg events, t, will be given by 

the following equation: 
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where m0(t) and m0(t) denote the total number of particles and the change in the total number of 

particles due to aggregation. In the absence of particle aggregation, the time step does not need to 

be explicitly calculated via Eq. (3) and, therefore, it can be arbitrarily set in the MC algorithm.  

Numerical solution of the uni-variate PBE.  

Detailed numerical simulations were carried out for several batch particulate processes undergoing 

particle aggregation, growth and nucleation and the calculated distributions were compared with 

available analytical solutions (Scott, 1968; Ramabhadran et al. 1976). Several particle aggregation 

rate functions (i.e., constant and sum aggregation kernels) and particle growth rate functions (i.e., 

size independent and size dependent) were considered. The particle nucleation rate function was 

assumed to follow an exponential, size-dependent functional form (i.e., 

( ) ( ) ( )0s 0s 0sS V, t N V exp V V= − , where N0s and V0s are some characteristic values of the 

distribution). Finally, the initial number density function, n(V, 0), was assumed to follow an 

exponential dependence with respect to the particle volume, ( ) ( ) ( )0 0 0n V,0 N / V exp V / V= − . For 



 

 

the presentation of the results, the following dimensionless aggregation, a, and growth, g, time 

constants were defined (Alexopoulos et al. 2004): 

0

�
a 0 0 g v 0 0V N t ; t G (V ) / V= =  

where 0, N0 and V0, are some characteristic values of the aggregation rate constant, particle 

number and particle volume, respectively. 

In Fig. 1, the MC calculated distribution is compared with the analytical solution for the case of 

pure aggregation with a constant aggregation rate ((V,U) = 0), for two different values of the 

dimensionless aggregation time (i.e., a = 103 and a = 106). Fig. 2 depicts the comparison of the MC 

calculated PSD with the analytically calculated distribution for the case of sum particle aggregation 

( (V,U) = 0(U+V)). Fig. 3 depicts the comparison of the distributions calculated by the MC 

method with the analytical ones for the case of combined constant particle aggregation ((V,U) = 

0) and constant particle growth (G(V) = G0), for two different sets of aggregation and growth times 

(i.e., a=102, g = 1 and a=102, g = 10). Finally, in Fig. 4, the MC calculated distribution is 

compared with the analytical distribution for the case of combined linear particle growth (G(V) = 

G0V) and exponential particle nucleation (( ) ( ) ( )0s 0s 0sS V, t N V exp V V= − ). It is important to 

point out that, to the best of our knowledge, it is the first time that MC results are reported for such 

long aggregation and growth times. 

It is evident that for the cases studied, there is an excellent agreement between the MC calculated 

distributions and their corresponding moments with the analytical solutions. Furthermore, the 

computational requirement of the method is substantially low (see Table 1). Finally, it should be 

noted that, in all cases, the distributions calculated by the MC algorithm were the outcome of a 

single simulation run. 

Numerical solution of the bi-variate PBE.  

Detailed numerical simulations were carried out for several batch particulate processes undergoing 

particle aggregation and growth, where analytical solutions of the bi-variate PBE were available 

(Gelbard and Seinfeld, 1978). The initial number density function, n(v, x, 0), was assumed to follow 

an exponential dependence with respect to the particle volume, 

( ) ( ) ( ) ( )0 0 0 0 0n V, x,0 N /(V x ) exp V / V exp x / x= − − . 

Figs. 5, 6 and 7 depict the contour plots for the cases of constant particle aggregation ((V,U,x,z) 

= 0), constant particle growth (GV(V,x) = Gx(V,x) = G0) and linear particle growth rates (GV(V,x) 

= G0V, Gx(V,x) = G0x), respectively. Finally, Fig. 8 depicts the MC and analytical contour plots for 

the case of combined constant particle aggregation ( (V,U,x,z) = 0) and linear particle growth 

(GV(V,x) = G0V, Gx(V,x) = G0x). It is apparent that there is a very good agreement between the MC 

calculated distributions and the analytical solutions. Furthermore, the leading moments of the 

distribution are calculated by the MC method with good accuracy. 



 

 

 

The above comparisons showed that the developed MC algorithm was capable of predicting the 

dynamic evolution of the uni-variate and bi-variate PSDs, as well as the leading moments of the 

distributions, with high accuracy, having, at the same time, low computational requirements. The 

accuracy of the method can be furthermore improved via the use of a larger sample population, 

which will lead to higher computational requirements and extended simulation times. 
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Figure 1: Comparison of dynamic PSDs 
for constant particle aggregation 
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Figure 3: Comparison of dynamic PSDs 
for combined constant particle aggregation 
and constant particle growth 
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Figure 5: Comparison of dynamic bi-
variate PSDs for constant particle 
aggregation (a = 1); a) analytical solution, 
b) MC simulation 
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Figure 2: Comparison of dynamic PSDs 
for sum particle aggregation 
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Figure 4: Comparison of dynamic PSDs 
for combined linear particle growth and 
exponential particle nucleation 
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Figure 6: Comparison of dynamic bi-
variate PSDs for constant particle growth 



 

 

( g = 1); a) analytical solution, b) MC 
simulation 
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Figure 7: Comparison of dynamic bi-
variate PSDs for linear particle growth 
( g = 3); a) analytical solution, b) MC 
simulation 
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Figure 8: Comparison of dynamic bi-
variate PSDs for combined constant 
particle aggregation (a = 1) and linear 
particle growth (g = 1); a) analytical 
solution, b) MC simulation 

 

Table 1. Simulation times and percent errors in the MC calculated zeroth and first order moments of the 
distribution for various batch particulate processes. 

Case 
Aggregation 

kernel 
Growth 

rate model 
Time, � Time, 

g 
m0 m1 Error 

in m0 
Error 
in m1 

CPU 
time, sec 

1.1 
�

0 - 103 0 1.9959 10-2 1.000579 0.00 % 0.06 % 3.1 

1.2 
�

0 - 106 0 1.9999 10-6 9.9797 10-1 0.00 % 0.20 % 6.7 

2.1 
�

 0(V+U) - 3 0 4.9700 10-2 1.0005796 0.17 % 0.06 % 10. 7 

2.2 
�

 0(V+U) - 6 0 2.4701 10-3 1.0005796 0.35 % 0.06 % 137.1 

3.1 
�

0 G0 100 1 1.9608 10-2 1.0792141 0.00 % 0.05 % 305.0 

3.2 
�

0 G0 100 10 1.9608 10-2 1.7869251 0.00 % 0.03 % 301.2 

4.1a - G0V 0 1 100.1775 19.78475 0.18 % 0.58 % 247.4 

4.2 a - G0V 0 10 100.1775 43549.85 0.18 % 1.14 % 247.5 

Case Aggregation 
kernel 

Growth 
rate model 

Time, � Time, 
g 

m00 m10=m01 Error 
in m00 

Error 
in m10 

CPU 
time, sec 

5 
�

0 - 1 0 0.666706 1.0629667 0.00 % 6.3 % 1182 

6 - G0 0 1 1 2.062966 0.00 % 3.15 % 94.9 

7 - G0V 0 3 1 21.350258 0.00 % 6.29 % 1354 

8 
�

0 G0V 1 1 0.666706 2.889443 0.00 % 6.58 % 1662 

aCombined with exponential nucleation. 

 
Litterature 
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