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In the present wok, an efficient stochastic Monte €&MC) algorithm is presented for the
numerical solution of the dynamic population balance egu@PBE) in batch particulate processes
undergoing simultaneous particle aggregation, growth and nucleati

The general uni-variate population balance equation fatehkparticulate system can be written

as follows:
an(V. a[G(V)n(V, t VI2
ngt 1), 9 (a)\r;( )] [ B(V-U,U)n(V-U,t)n(U,1)du-

. ’ (1)
n(V, 1) [ B(V,U)n(U,t)dU+S(V,1)

0
where n(V,t)dV denotes the number of particlesyret volume in the size range [V, V+dV]. G(V)
and S(V,t) are the particle volume growth rate #mel particle nucleation rate, respectively and
B(V,U) is an aggregation rate kernel for particlésvolumes V and U. In general, Eq. (1) will

satisfy the following initial conditiom(V,0)=n,(V), where gV) is the initial number density

function. If the value of the number density funatiat the minimum particle volume, ng¥, t), is

known, the corresponding boundary condition for EJ) takes the following form:
N(Viins t) =1, (1)«
The general bi-variate PBE for a batch particusgtgem is given by:
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In accordance to the uni-variate PBE(V, X, t)dVdx denotes the number of particles per unit

volume in the size range [V, V+dV] having the prdpex in the range [x, x+dx]. Furthermore,
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B(V,U,x,z) denotes the aggregation rate kernel between lesrtgith volumes V and U and
internal properties x and z, respectively. Theiahitondition of Eq.(2) isn(V,x,0)=n, (V,x) and
the boundary conditions that may be usedrdg® x, t)= n,  (x,t) andn(V,0,t)=n, (V,t).

The stochastic Monte Carlo (MC) method is basetherprinciple that the dynamic evolution of
an extremely large population of particles (e.@*?1can be followed by tracking down the
corresponding changes or events (i.e., growth, eaggion, nucleation) occurring in a smaller
number of sample particles, (e.g.,>Xl0nitially, the particle volume and/or the secondemal
property domains are divided into a number of @sxrvolume intervals using a logarithmic
discretization rule. Subsequently, each particlethe sample population is assigned to an
appropriately selected volume;, nd an appropriately selected value of the ialggroperty, x so
that the particle array at time zerof{®, closely represents the initial distributioncarding to the
“inverse transform method” (Rubinstein, 1981). Oalie¢he particles in the sample population have
been assigned to randomly selected volumes, thealdGrithm is initiated and the effects of
particle aggregation, growth and nucleation medmsion the dynamic evolution of the particle
population are stochastically simulated in a conBee series of variable-duration time steps.

In problems involving particle aggregation, the @iratep can be determined in terms of the
number of aggregation eventsgl\ that take place (Gooch et al., 1996). Accordmghe above
procedure, the time required for the occurrencthefduration of g eventsAt, will be given by

the following equation:

At = mo_fmo D: [ B(V)-D(V) Jdv Tdmo ®3)

where ng(t) and Amy(t) denote the total number of particles and thengle in the total number of
particles due to aggregation. In the absence dicfaggregation, the time step does not need to
be explicitly calculated via Eq. (3) and, therefatean be arbitrarily set in the MC algorithm.

Numerical solution of the uni-variate PBE.

Detailed numerical simulations were carried outseveral batch particulate processes undergoing
particle aggregation, growth and nucleation and ddleulated distributions were compared with
available analytical solutions (Scott, 1968; Ranaalhn et al. 1976). Several particle aggregation
rate functions (i.e., constant and sum aggrega@nels) and particle growth rate functions (i.e.,
size independent and size dependent) were condidéhe particle nucleation rate function was

assumed to follow an  exponential, size-dependent nctional form  (i.e.,
S(V,t) =(Nys/ Voo exp(= V/ Vo), where Ns and s are some characteristic values of the
distribution). Finally, the initial number densitynction, n(V, 0), was assumed to follow an

exponential dependence with respect to the parizleme, n(V,0) =(N,/V,)exp(-V/V,). For



the presentation of the results, the following disienless aggregation, and growth,tg, time
constants were definddlexopoulos et al. 2004

T, =BV N ¢ ; 1,=tG (V)/V,

where o, No and b, are some characteristic values of the aggregaate constant, particle
number and particle volume, respectively.

In Fig. 1, the MC calculated distribution is comg@mwith the analytical solution for the case of
pure aggregation with a constant aggregation #té,0) = po), for two different values of the
dimensionless aggregation time (ias 10*andt,= 1¢°). Fig. 2 depicts the comparison of the MC
calculated PSD with the analytically calculatedribsition for the case of sum particle aggregation
(B(V,U) = Bo(U+V)). Fig. 3 depicts the comparison of the dimitions calculated by the MC
method with the analytical ones for the case oflwopd constant particle aggregatii\y(,U) =
Bo) and constant particle growth (G(V) s)Gfor two different sets of aggregation and grovuties
(ie., =10, 13 = 1 andt=1C% 1y = 10). Finally, in Fig. 4, the MC calculated disttion is
compared with the analytical distribution for treese of combined linear particle growth (G(V) =

GoV) and exponential particle nucleatio®((V,t) =(N,,/V,.)exp(- V/V,)). It is important to

point out that, to the best of our knowledge, ithis first time that MC results are reported fochsu
long aggregation and growth times.

It is evident that for the cases studied, theamigxcellent agreement between the MC calculated
distributions and their corresponding moments wite analytical solutions. Furthermore, the
computational requirement of the method is substiyniow (see Table 1). Finally, it should be
noted that, in all cases, the distributions cateadlaby the MC algorithm were the outcome of a
single simulation run.

Numerical solution of the bi-variate PBE.

Detailed numerical simulations were carried outseveral batch particulate processes undergoing
particle aggregation and growth, where analyticdlitions of the bi-variate PBE were available
(Gelbard and Seinfeld, 1978). The initial numbensiyy function, n(v, x, 0), was assumed to follow
an exponential dependence with respect to the  cfarti volume,
n(V,x,0) = (N, /(VyX,)) exp(= V/V,) exp(= X/%,) .

Figs. 5, 6 and 7 depict the contour plots for thees of constant particle aggregatipfy(U,x,z)
= Bp), constant particle growth (QV,x) = G«(V,X) = Gy) and linear particle growth rates(®,x)
= &V, G«(V,X) = Gx), respectively. Finally, Fig. 8 depicts the MCdaanalytical contour plots for
the case of combined constant particle aggregdfiw,U,x,z) = o) and linear particle growth
(Gv(V,X) = &V, Gx(V,x) = Gpx). It is apparent that there is a very good agesgrbetween the MC
calculated distributions and the analytical solsioFurthermore, the leading moments of the
distribution are calculated by the MC method witdod accuracy.



The above comparisons showed that the developedlii2ithm was capable of predicting the
dynamic evolution of the uni-variate and bi-vari&8Ds, as well as the leading moments of the
distributions, with high accuracy, having, at tlzene time, low computational requirements. The
accuracy of the method can be furthermore improxiadthe use of a larger sample population,
which will lead to higher computational requirenseand extended simulation times.
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Figure 1: Comparison of dynamic PSDs
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Figure 5: Comparison of dynamic bi-
variate PSDs for constant particle
aggregationt; = 1); a) analytical solution,
b) MC simulation
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Figure 2: Comparison of dynamic PSDs
for sum particle aggregation
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Figure 4. Comparison of dynamic PSDs
for combined linear particle growth and
exponential particle nucleation
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Figure 6: Comparison of dynamic bi-
variate PSDs for constant particle growth
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Figure 7: Comparison of dynamic bi-
variate PSDs for linear particle growth
(tg = 3); a) analytical solution, b) MC
simulation
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Figure 8: Comparison of dynamic bi-
variate PSDs for combined constant
particle aggregationt{ = 1) and linear
particle growth {g = 1); a) analytical
solution, b) MC simulation

Table 1. Simulation times and percent errors in the MC datedl zeroth and first order moments of the
distribution for various batch particulate procasse

Case Aggregation Growth Time, Time, Mo m; I_Error I_Error _ CPU
kernel rate model To Ty in Mo inmy  time, sec
1.1 Bo - 1¢° 0 1.9959 18 1.000579  0.00 % 0.06 % 3.1
1.2 Bo - 1¢ 0 1.999916 9979713  0.00 % 0.20 % 6.7
2.1 B o(V+U) - 3 0 4970018 1.0005796  0.17 % 0.06 % 10. 7
2.2 B o(V+U) - 6 0 2470118 1.0005796  0.35% 0.06 % 137.1
3.1 Bo Go 100 1 1.9608 1 1.0792141  0.00 % 0.05 % 305.0
3.2 Bo Go 100 10 1.9608 1® 1.7869251  0.00 % 0.03 % 301.2
4.2 - GoV 0 1 100.1775  19.78475  0.18 % 0.58 % 247.4
4.22 - GoV 0 10 100.1775  43549.85  0.18% 1.14 % 247.%
Case Aggregation Growth Time, Time, Moo Mip=Me1  Error Error CPU
kernel rate model Ta Ty iINmMe  inmy time, sec
5 Po - 1 0 0.666706  1.0629667  0.00 % 6.3 % 1182
6 - Go 0 1 1 2.062966  0.00 % 3.15% 94.9
7 - GoV 0 3 1 21.350258  0.00 % 6.29 % 1354
8 Po GoV 1 1 0.666706  2.889443  0.00 % 6.58 % 1662

4Combined with exponential nucleation.
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