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Abstract

Recent interest in cryogenic applications has enhanced studies in coflow superfluid

turbulence, which is characterized by two fluids, normal and superfluid, moving in the

same direction. In our studies we are interested to deal with superfluid turbulence in

plane Couette flow, as an illustration of this interesting phenomena. An equation previ-

ously proposed to describe the evolution of vortex line density in rotating counterflow

turbulent tangles in 4He is generalized to incorporate nonvanishing barycentric velocity

and velocity gradients. Incorporating our generalized equation into a thermodynamical

model previously proposed, we evaluate the vortex density in plane Couette flow.

Keywords: quantum vortices, coflow and counterflow.

1. Introduction.

The most well known hydrodynamical model of superfluid helium is
the two-fluid model of Tisza [1] and Landau [2] which thinks helium II
as a mixture of two fluid components, the normal fluid and the superfluid,
having densities ρn and ρs respectively and velocities vn and vs respectively,
with total mass density ρ and velocity v defined by ρ = ρs + ρn and ρv =
ρsvs + ρnvn. The first component consists of thermally excited states that
form a viscous fluid which carries the entire entropy content of the liquid.
The second component is related to the quantum ground state and is an
ideal fluid, which does not experience dissipation neither carries entropy.

The behaviour of helium II is very different from that of classical flu-
ids, as confirmed by many experiments [3,4]. One example of non-classical
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behavior is heat transfer in counterflow experiments (absence of mass flux
ρnvn +ρsvs = 0), characterized by an extremely high thermal conductivity
(three million times larger than that of helium I). The two-fluid model ex-
plains the experimental counterflow situation. In fact, the heat is carried to-
ward the bath by the normal fluid only, and the heat flux q = ρsTvn where
s is the entropy per unit mass and T the temperature. On the other side, be-
ing the net mass flux zero there is superfluid motion — in opposite direction
with respect to normal component — toward the heater (vs = −ρnvn/ρs),
hence there is a net internal counterflow Vns = vn − vs = q/(ρssT ) which
is proportional to the applied heat flux q.

Quantum turbulence is described as a chaotic tangle of quantized vor-
tices characterized by a quantum of vorticity κ = h/m4 (h being the Planck
constant and m4 the mass of 4He atom) and measured by introducing a
scalar quantity L, the average vortex line length per unit volume, briefly
called vortex line density. An evolution equation which describes the dy-
namics of L in counterflow superfluid turbulence has been formulated by
Vinen, who, neglecting the influence of the walls, proposed [5]:

(1)
dL

dt
= αvVnsL

3/2 − βvκL2,

with Vns the averaged magnitude of the counterflow velocity Vns and αv

and βv dimensionless parameters. Equation (1) assumes homogeneous tur-
bulence, i.e. that the value of L is the same everywhere in the system. This
equation was extended in [6] to the combined situation of counterflow and
rotation.

The experiments of thermal counterflow and rotating sample were ex-
tensively studied over the years, and now special emphasis is addressed to
the situations in which the barycentric velocity v is not zero, such as Cou-
ette flow. Here, we are interested to extend previous results for rotating
superfluid turbulence to include also situations where the barycentric ve-
locity is not zero, which have practical interest, for instance, in cryogenic
applications. To this aim we generalize a previous equation proposed for ro-
tating counterflow superfluid turbulence [6] by emphasizing more explicitly
the dynamical role of the rotational of the superfluid velocity vs, related
to quantized vortices. This allows us to write a proposal for the evolution
equations of vortices in plane Couette and Poiseuille flows. Furthermore,
we will define a quantum Reynolds number for the superfluid turbulence as
well as the classical Reynolds number for the turbulence in viscous fluids.
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2. Hydrodynamical model.

The image of helium II as composed by a mixture of two fluid requires
two different evolution equations for normal and superfluid velocities. A set
of equations frequently used are the Hall-Vinen-Bekarevich- Khalatnikov
(HVBK) equations, which in an inertial frame are written as

ρn
∂vn

∂t
+ ρn(vn · ∇)vn = −ρn

ρ
∇pn − ρsS∇T + Fns + η∇2vn,(2)

ρs
∂vs

∂t
+ ρs(vs · ∇)vs = −ρs

ρ
∇ps + ρsS∇T − Fns + ρsT,(3)

where ∇pn = ∇p+(ρs/2)∇V 2, ∇ps = ∇p− (ρn/2)∇V 2, p is the total pres-
sure, S is the entropy, η is the dynamic viscosity of the normal component
and ρsT is the vortex tension force, which vanishes for rectilinear vortices
and for isotropic vortex tangles, but which may be relevant in other situ-
ations. Here we will assume that T = 0. Fns is the mutual friction force
between normal and superfluid components, which depends on the presence
of vortices (it is null in the laminar regime) as

(4) Fns = αρsκL

[
p̂× [p× (V − vi)] +

α′

α
p̂× (V − vi)

]
,

with α and α′ being friction coefficients depending on temperature, and
the “self-induced velocity” vi approximated by vi = β̃∇× p̂. The polarity
vector p was first defined by Lipniacki in [7] and then used by us in [8], and
it is linked to the rotational of the averaged superfluid velocity by

(5) p = < s′ > =
∫

s′dξ∫
dξ

=
∇× vs

κL
,

averaged in a mesoscopic volume Λ, where s′ is the first derivative of the
curve s(ξ) describing a vortex line with respect to the arc-length ξ. Note
that in the transient interval when the turbulence has not a homogeneous
distribution in the whole system, the polarity vector p depends on the spa-
tial position of Λ in the system. On the other side, when the homogeneous
situation is reached, any volume Λ in the system can be assumed to have the
same polarity p (see Fig. 1 of Ref. [8]) [9]. From (5) one can note also that
|p| ∈ [0, 1] measures the directional anisotropy of the tangent to the vortex
lines: in particular |p| = 1 for a system of parallel vortices and |p| = 0 for
isotropic tangles.

The hydrodynamic model (2) and (3) has to be completed by an evo-
lution equation for the vortex line density L which has field properties: it
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depends on the coordinates, it has a drift velocity vL, and it has associated
a diffusion flux JL. This evolution equation in inhomogeneous situation
takes the form

(6)
∂L

∂t
+∇ · JL = σL,

where σL stands for the production term, which in the counterflow experi-
ments is the right hand side of Vinen equation (1). The form of JL contains
a convective contribution, LvL with vL the velocity of vortex lines with re-
spect to the laboratory frame, and a diffusive contribution. Here, neglecting
the relaxation time of JL and considering isothermal situations, we take for
JL the following simple law, where the diffusive contribution is analogous
to Fick’s diffusion law

(7) JL = −D̃∇L + LvL.

The coefficient D̃ (of the order of κ [10], [11]) is the diffusion coefficient
of vortex lines. When turbulence reaches an homogeneous distribution in
the vessel then the flux JL is almost zero, and hence can be neglected in
equation (6) becoming the Vinen equation (1).

After some transient time when the homogeneous situation is reached,
an evolution equation for the dynamics of quantum vortices in rotating
helium under counterflow was proposed in [6], describing the influence of
the heat flow and of angular velocity on the vortex line density. In particular,
the vortex-line density L was assumed to obey the following equation

(8)
dL

dt
= −βκL2 +

[
α1V + β2

√
κΩ

]
L3/2 −

[
β1Ω + β4V

√
Ω
κ

]
L,

where β, α1, β2, β1, and β4 are dimensionless coefficients and Ω = |Ω| is
the angular velocity of the container. The coefficients are seen to satisfy
the relations β4 =

√
2α1 and β1 =

√
2β2 − 2β, which are required on

relatively general arguments about the form of solutions. Their particular
values were obtained in Ref [6] by comparison with experimental data of
[12], and were confirmed by a different calculation carried out in [13]. When
Ω = 0, equation (8) reduces to the Vinen’s equation (1), with parameters
α1 and β being respectively related to the production and destruction of
vortices per unit volume and time.

Equation (8) lacks an important source of vorticity, namely a barycen-
tric velocity gradient, which is known to produce turbulence as for in-
stance in Couette flow. In [8] this equation was generalized by incorpo-
rating barycentric velocity gradients, simply interpreting equation (8) in
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some deeper terms, which will be useful for a consistent incorporation of
the velocity gradient. The main topic was to note that, in the particular
case of pure rotation, Ω is related to rot vs as 2Ω = |rot vs|, vs being
the macroscopic superfluid velocity. So, writing an equation such as (8) in
terms of rot vs and V rather than in terms of Ω and V would be more
general, because it would reduce to (8) for rotation, and it could be applied
to other flows as plane Couette flow, where |rot vs| = dvsx(z)/dz, x being
the direction of the fluid motion, z the direction orthogonal to the parallel
plates, and vsx(z) the macroscopical superfluid velocity, depending only on
z.

But, the direct replacement of the quantity 2Ω = |rot vs| in the equa-
tion (8) is not completely correct because whereas Ω is taken as an exter-
nally fixed parameter in (8), rot vs is a dynamical quantity, which must
be described by a suitable evolution equation. It will be correct when one
assumes equation (6) with the production term given by the right hand side
of equation (8). Under this assumption the production term σL becomes
(9)

σL =
[
α1V +

β2√
2

√
κ|rot vs|

]
L

3
2−

[
β1

2
|rot vs|+ β4V√

2

√
|rot vs|

κ

]
L−βκL2,

which reduces to the right-hand side of (8) for pure rotation. Note that in
(8) it is assumed that |rot vs| is equal to 2Ω, even if it will take some time
for vs to get these values, so that expressions (6) and (9) generalize (8)
also on dynamical grounds. Then, the form (8) will be useful after some
transient interval, whereas (6) and (9) is expected to be valid also for fast
changes in vs. Thus, equation (6) with σL expressed by (9) is the central
point of this paper, as it generalizes (8) both to a wider set of external
conditions and to a wider domain of dynamical variations.

Now, using the polarity vector p introduced above and mimicking in
some way the form of the original Vinen’s equation, equation (6) and (9)
becomes
(10)
∂L

∂t
+∇·JL = σL = α1V L3/2

[
1−A

√
|p|

]
−βκL2

[
1−

√
|p|

] [
1−B

√
|p|

]
,

where B = β1

2β and A = β4√
2α1

, which in [8] was assumed equal to 1 moti-
vated by the comparison with the experimental data performed in [6]. The
polarization comes from pinned vortex lines, which begin and end on the
walls of the container. In rotating containers, a part of the vortices go from
one end to the other of the system, more or less parallel to the angular
velocity vector. Near the walls, the polarization is a little bit higher than
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in the bulk, because the proportion of pinned vortices is higher, with re-
spect to closed loops, and equation (10) predicts a reduction in the rate of
formation and destruction of vortex lines, as compared with the bulk.

Another argument which we will focus our attention on is the character-
ization of the transition from laminar flows to turbulent flows. In classical
fluids, this transition is often characterized in terms of the dimensionless
Reynolds number. It would be interesting to have a similar characterization
of the transition to superfluid turbulence in an analogous way, by defining
a suitable dimensionless number. This is also confirmed by the fact that
when the counterflow velocity (related to the heat flux) is high enough,
vortices appear in the superfluid, and that when the barycentric velocity of
the superfluid is high enough, vortices appear. But, in superfluids there is
not a typical viscosity, as the value of the viscosity of the superfluid com-
ponent is zero. However, the quantum of vorticity has the same dimensions
as kinematic viscosity, and therefore, one may define a quantum Reynolds
number as

(11) Reyq =
vsD

κ

where D is the typical size of the the duct or of the object and vs is the
modulus of the superfluid velocity. Of course, number (11) holds true also
for a different choice of the velocity, such as the counterflow velocity —
which in counterflow situation is linked to superfluid velocity — or the
barycentric velocity. However, the transition to superfluid turbulence is due
to the fact that the superfluid component becomes turbulent.

The choice of κ in place of the viscosity is not accidental, but it is sup-
ported by the fact that the turbulence in superfluids is characterized by the
presence of a tangle of quantized vortices which are formed if the circulation
of the relative velocity between normal and superfluid component exceeds
the quantum of vorticity κ. In spite of its physical appel, this number is
not as widely used as it could be expected, but it is useful to characterize
quantum turbulence.

3. Vortex-line density in rotating counterflow and plane Couette
flow.

In this Section, we investigate the proposed equation (10) for a rotating
superfluid helium inside a cylindric container in the presence of counterflow
when the homogeneous situation is reached, and for a barycentric motion
as plane Couette flow (without external heat flux) between two parallel
plates.
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3.1. Application to rotating counterflow.

In this case we consider the experimental situation of a rotating con-
tainer filled of helium II with an external counterflow V parallel to the
angular velocity Ω of the container by Swanson et al. [12]. For high angular
velocities, after some transient time, when the steady state is reached, these
authors observed two critical counterflow velocities Vc1 and Vc such that for
0 ≤ V ≤ Vc the line density L is approximately independent on V , undergo-
ing only a small step (about 0.4%) at the first critical velocity Vc1 whereas
for V ≥ Vc the line density L grows with V 2. Here, we will neglect the small
step of the vortex density at the first critical velocity Vc1 because it is far
from the scopes of this paper (see Ref. [8] for further investigations).

In this situation equation (10), together with the HVBK equations,
should be valid also in transient situation, even if numerical simulation and
experiments are needed. Therefore, we restrict our interest to the homoge-
neous situation in such a way that the vortex flux JL can be neglected, and
any variation in L is linked to the production term σL as well as the polarity
vector p can be approximately assumed independent on the spatial coordi-
nates because the small volume Λ, used to define it, has the property that
it does not depend on the position vector x (see Fig. 1 of Ref. [8]). There-
fore, the only equation needs to describe the homogeneous situation is the
new evolution equation (10) for L (with JL = 0). The polarity vector p is
parallel to the direction of rotation and external counterflow, and its mod-
ulus depends on the counterflow velocity. In fact, from the definition of the
vector p, one notes that |p| = 1 for V < Vc, because L ≈ 2Ω/κ ≈ |rot vs|
in this situation, whereas |p| < 1 for V > Vc because |rot vs| = 2Ω and
the vortex line density is higher than 2Ω/κ (see Fig. 2 of Ref. [8]). In the
homogeneous situation equation (10) can be written

(11)
dL

dt
= L3/2

(
1−

√
|p|

) [
α1V − βκL1/2

(
1−B

√
|p|

)]
,

whose stationary solutions are

(12) |p| = 1 and L1/2 =
α1

βκ
V + B

√
|∇ × vs|

κ
.

The stability of the solution |p| = 1 can be studied assuming that the
perturbation δ does not modify the vorticity ~ω = rot vs in such a way the
relation δ|p| = −(|p|/L)δL is obtained. Therefore, linearizing equation (11)
the following evolution equation for the perturbation δL is obtained

(13)
(

∂δL

∂t

)

|p|=1

=
[

α1V

2L1/2
− 1

2
βκ(1−B)L

]
δL,
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from which it follows that the solution |p| = 1 is stable for V less than

(14) Vc =
β

α1
(1−B)

√
|∇ × vs|κ,

which corresponds to the critical velocity Vc in the experiments of Swanson
et al. [12]. The value B = 1 vanishes the critical counterflow velocity (14)
for which the straight vortex lines parallel to the rotation axis become
unstable. But, this is not the case because in [6] from a comparison with
experimental data the value B = 0.89 < 1 was found.

For counterflow velocity higher than the critical velocity (14), the so-
lution |p| = 1 becomes unstable, and the line density L assumes the value
(12b) which depends on V and |rot vs|. There, in the second term in the

right hand side, namely B

√
|∇×vs|

κ , for low values of the counterflow ve-
locity, the vorticity is essentially due to the rotation, and therefore we put
|∇ × vs| = 2Ω, recovering the results obtained in [6].

As already pointed out, in [7] a hydrodynamical model of superfluid
turbulence was proposed by Lipniacki, which is valid for plane Couette
flow and rotating counterflow but only for V > Vc, as also remarked by the
author himself. His proposal is

(15)
dL

dt
= α̃I0c10V L3/2

[
1− |p|2]− β̃αc2

20L
2
[
1− |p|2]2

,

where I0 = I · V̂, and the subscript 0 stands for independence of I0 on V
and L. The author chooses for I0 the same values found in pure counterflow,
in such a way to not consider the anisotropy of the vortex tangle, which is
present owing of the high values of rotation considered in the experiments
by Swanson et al.. I is the binormal vector already defined by Schwarz [3]

(16) I =
< s′ × s′′ >

< |s′′| > .

The stationary solutions of the equation (15) are |p| = 1 (which however is
unstable) and

(17) L =
LH(

1− (Lω/L)2
)2 ,

where

(18) LH = V 2

(
c10I0

βc2
20

)2

and Lω =
|rotvs|

κ
=

2Ω
κ
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are the steady state vortex-line density in pure counterflow and in pure
rotation, respectively.

In Fig. 2 of Ref. [8], we compare the results of equations (10) and (15)
with the experimental data of Swanson’s experiments. It follows that our
model yields the horizontal branch of the experimental data for V < Vc,
which are not described by equation (15), and also equation (10) (black
line) describes better the experimental data (solid circle) than (15) (dashed
line) for V > Vc.

A reason for the difference between proposals (10) and (15) could be
related to a different microscopical interpretation of some terms in the
evolution equation for L. It is known that in rotating superfluid helium
the vortices grow near the walls due to the rotation, and drift towards the
center of the system, where they find a repulsion due to other vortices.
It could then be that the vanishing of the terms in (10) as 1 −

√
|p| had

a different physical origin than the vanishing proposal by Lipniacki from
a different model. These open questions stress the need of the inclusion
of rotational effects in a more general version of Schwarz’s derivation of
Vinen’s equation.

3.2. Application to plane Couette flow.

Equation (10) may be also used to describe situations with barycentric
motion as plane Couette and Poiseuille flows, without external heat flux,
between two parallel plates [8]. Here, we consider two plane surfaces at
z = 0 and z = D such that the second one moves parallely to the first
one at the velocity V0, sufficiently small to maintain laminar the normal
component and sufficiently high to neglect the “effects of the walls”. When
the upper plate starts suddenly moving with respect to the lower plate, the
normal component starts moving under the action of the viscous force and
non-slip condition, whereas the superfluid component will remain initially
insensitive to the motion of the plate. From the HVBK equations one finds
a Newtonian profile vn = zV0/D for the normal fluid and vs = 0 for
the superfluid because the lack of vortices (see Fig. 1). Then, a relative
velocity (the counterflow velocity) V(z) = vn − vs will arise between the
two components: V is maximum for z = D (upper plate) and zero for z = 0
(lower plate). When the counterflow velocity reaches a critical value near
the moving plane, the remnant vortices, always present in He II, begin to
lengthen and reconnect to form other vortices, which diffuse towards the
lower plate (at rest) because of vortex line flux JL and the second term of
the mutual friction force (4), forming, in the stationary situation, an array
of vortices along the y-direction. The transition to the superfluid turbulence

9



M. Sciacca et al

vnvs

z=0

z=D

x

V0

Fig. 1. Initial profile of the velocities of superfluid and normal components.

will be characterized by the quantum Reynolds number (11) with V in place
of vs.

Through the vortices, the normal and the superfluid components become
coupled by the mutual friction force Fns, and the superfluid will tend to
match its velocity with that of the normal fluid (V → 0); this will introduce
a rotational |rot vs| = |∂vs/∂z| 6= 0 in the superfluid.

After a sufficiently long time, it is expected that a steady shear flow will
have formed, with vn = vs depending only on z and having the x direction
and such that ∂vn/∂z = ∂vs/∂z = rot vs = V0/D, corresponding to the
physical Newtonian linear profile, which follows from the hydrodynamical
model (2) and (3) with vanishing tension force T = 0. In terms of Reyq, vor-
tices will be created for Reyq higher than a critical value, and the creation
of them will be stopped when Reyq decreases under this critical value.

Since we are interested to consider steady state and relatively slow vari-
ations with respect to steady states, then rot vs with its own nontrivial
dynamics should not be considered in the dynamical equation of L. Then,
the dynamics of L in this case is described by
(19)

dL

dt
= L

(
L1/2 −

√
1
κ

∣∣∣∣
∂vs

∂z

∣∣∣∣
)[

α1V − βκ

(
L1/2 −B

√
1
κ

∣∣∣∣
∂vs

∂z

∣∣∣∣
)]

−
'0︷ ︸︸ ︷

∇ · JL

In the stationary situation V ≈ 0 and, according to (19), there will be a
completely polarized array of vortices, perpendicular to the velocity and to

10



DOI: 10.1685/CSC09290

the velocity gradient, with uniform areal density given by

(20) L =
1
κ

∣∣∣∣
∂vs

∂z

∣∣∣∣ =
V0

κD
,

which, according to the intrinsic feature of equation (19), is stable for V
less than

(21) Vc =
β

α1

[
2
β4

α1
− β2

β

] √
κ

2

∣∣∣∣
∂vs

∂z

∣∣∣∣ ∼= c′
√

κ

2

∣∣∣∣
∂vs

∂z

∣∣∣∣,

with c′ ≈ 3.7, according to the values of the coefficients used in (8) to
describe the value of Vc in rotating counterflow velocity.

4. Conclusion.

In this paper, by writing the local average rotational of the superfluid
component instead of the angular velocity, we have enlarged the set of
applications of the theory in two main aspects: (a) our proposal (9), in
contrast to the previous one (8), may be applied not only to rotation but
also to shear flows, as illustrated in plane Couette flow; (b) since in our
proposal (9) rot vs appears, then it becomes deeply coupled to the HVBK
equations (2) and (3) for vn and vs.

The application of our model to plane Couette flow gives an ordered
array of vortices, parallel to the plates and orthogonal to the velocity V0,
which is stable until V < Vc. This means that, as V0 grows, the regular
array of rectilinear vortices is still present and the velocities vn, vs and V
have rectilinear profiles, but with slightly different slope. The value of V is
maximum near the plane z = D. When the counterflow velocity V reaches
the critical value Vc the regular Couette array of vortices becomes unstable
and a disordered tangle of vortex lines appears in the zone between the two
plates.

This new evolution equation (9) for the vortex line density combined
with HVBK equations, or with other thermodynamical systems (already
proposed in our paper), could be applied to Couette or Poiseuille flows to
study the stability of the stationary solutions. The same models could be
useful for numerical simulations. The main results of the present paper, as
well as an application to plane Poiseuille flow, were published in Ref. [8].
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