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Abstract

Mini Magnetospheric Plasma Propulsion (M2P2) is a propulsion system based on

the deflection of the ambient plasma through the deployment of a magnetic bubble sur-

rounding the spacecraft. Although the plasma momentum is small, it is possible to obtain

even some newtons of thrust through the employment of a large magnetic field. After a

description of the dynamic model of thrust, a discussion of the performances of M2P2 in

comparison with other propulsion systems is given. Results of comparisons are expressed

through some test cases.
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1. Introduction.

Mini Magnetospheric Plasma Propulsion is a kind of propulsion system
based upon the deflection of the ambient plasma through the employment
of an intense magnetic field surrounding the spacecraft.

At a given distance from the spacecraft, depending upon the magnetic
field strength and the solar wind pressure, the plasma is diverted from its
original trajectory and some momentum is transferred to the spacecraft.
The radius of this interaction region, which finally depicts a sort of bub-
ble surrounding the spacecraft, can be simply estimated by comparing the
magnetic pressure and the solar wind pressure: the distance at which the
first one equals the second one gives an approximate value of the radius
of the interaction region. The momentum is transferred to the spacecraft
through this magnetic bubble; it is evident that the large is the interaction
radius, the bigger is the thrust level attainable.
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A dipolar magnetic field by itself would not be able to produce an in-
teraction region enough wide to produce a relevant thrust level; the basic
concept behind the M2P2 propulsion system is to limit the magnetic field
decrease along with the distance through the injection of plasma into the
field lines. The effect of plasma is to stretch the dipole lines so that the mag-
netic field intensity decrease as R−1.1 instead of R−3, being R the distance
from the dipole. Plasma consuption is in the order of 0.5 kg/day.

Among the disadvantages of the M2P2 system the most relevant is the
impossibility to modify the thrust direction, which is aligned with the solar
wind velocity vector. This features makes the M2P2 unsuitable, for example,
to perform interplanetary transfers, unless it is supported by another kind
of propulsion system such as a rocket engine. Also the high level of power
required onboard to produce the magnetic field is another negative aspect
related to the employment of M2P2 system in comparison with others.

2. The thrust model.

Thrust modulus and direction of M2P2 depend upon the interaction
with the inflated magnetosphere with the solar wind flux. By looking at
the Parker model for the solar wind, it is possible to assume that solar
wind is ejected by Sun corona in all the space directions with supersonic
speed and that the interaction with the magnetosphere produces a thrust
which is mostly oriented along the Sun-spacecraft direction.

In this work two different thrust models have been considered: a purely
radial thrust model, in which the only variable parameter is the thrust mag-
nitude (which can be null or equal to a finite value), and a model where
the acceleration direction can slightly changes within a cone whose axis
is aligned with the Sun-spacecraft conjunction line. In this second model
the thrust magnitude depends upon the tangential component of the ac-
celeration, and the thrust components depend upon each other according
a polynomial expression. Given an heliocentric reference frame and assum-
ing the spacecraft depicts a trajectory laying in the ecliptical plane, let r̂,
ϑ̂ the two unit vectors describing the radial (Sun-spacecraft line) and the
tangential direction respectively. In such a reference frame, the accelera-
tion components provided by M2P2 would be represented by the following
relations:

(1) fr = τ
T

m
, fϑ = 0

being T the thrust maximum value, m the spacecraft mass and τ an on-off
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function. As for the second model, one gets:

(2) fr = fr,0

[
1 + a1(

fϑ
fr,0

) + a2(
fϑ
fr,0

)2

]
, fϑ 6= 0

where the coefficients a1, a2 are specific for the given magnetosphere.
In the following section a detailed description of the test cases and of

the corresponding equations of motion will be given.

3. Analysis of the M2P2 performances.

3.1. Test Case 1: minimum time interplanetary transfer

As first test case a typical problem of interplanetary transfer has been
chosen: the minimum time Earth-Mars transfer. This problem is particu-
larly interesting, as Mars represents the last frontier to the manned space
exploration. The most critical problem concerning an interplanetary trans-
fer to Mars is the time needed to reach the target with a given propulsion
system: the prolonged exposure to radiation and the absence of gravity
makes the travel deleterious for human health. For this reason the mini-
mum time problem has been chosen to analyze the M2P2 performances.
Also a minimum time transfer to Jupiter might be of interest for scientific
missions: in this work, both cases have been considered. To note that M2P2
propulsion system is used only to perform the interplanetary transfer, and
not to provide the thrust required for the escape from Earth and the cap-
ture into the target body gravity field. In both cases the employment of
M2P2 would be by far unprofitable, since the acceleration due to the mag-
netic bubble is too small in comparison with the gravity one acting on the
spacecraft when it is inside the planet sphere of influence. Escaping the
planet gravity or spiralizing towards the destination orbit would require an
amount of time whose order of magnitude is similar to that of the time nes-
sary to perform the interplanetary transfer. Therefore, the injection into the
escape hyperbola and the capture manoeuvre must be executed by means
of a chemical propulsion system. More in detail, the spacecraft could be
put straight into the escape hyperbola by the launcher upper stage. This
would lead to a further reduction of the spacecraft mass.

In this work the problem of the minimum transfer time is solved through
the well-known approach given by the Lagrange multipliers, leading to the
resolution of the so-called Mayer problem according to the Potryagin maxi-
mum principle. The Mayer problem is a particular case of the more general
Bolza problem, which can be summarized as follows. Given a n-dimensional,
non autonomous system of first order differential equations controlled by
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the r-dimensional action u:

(3) F(z, ż,u, t) = 0

where F : Rn × Rn ×RRp ×RR −→ RRn, a functional:

(4) J =
∫ t2

t1

g(z, ż,u, t)dt+ h [t1, z(t1), t2, z(t2)]

with g : Rn × Rn × Rp × R −→ R, g : Rn × Rn × Rp × R −→ R, and a set
of boundary conditions:

(5) ψ [t1, z(t1), t2, z(t2)] = 0

being ψ : R × Rn × R × Rn, p ≤ 2n + 2 the Bolza problem consists
of the minimization of the functional J under the differential constraints
given by the system F(z, ż,u, t) = 0, so that also boundary conditions
ψ [t1, z(t1), t2, z(t2)] = 0 are respected. In other terms, the solution to the
Bolza problem is the trajectory, among the all possible ones connecting
z(t1) to z(t2), which makes minimum the functional J. If one states that:

(6) J = h [t1, z(t1), t2, z(t2)]

and

(7) p < 2n+ 2

the Bolza problem is known as the Mayer problem. Condition 6 implies that
the functional depends upon the solely initial and final required conditions,
whereas condition 7 states that boundary constraints interest only a part
of the state vector, and not the whole one.

In the calculus of variations, necessary conditions for optimality can
be obtained through Lagrange multipliers; the relations describing such
necessary conditions for a strong maximum are given by the Pontryagin
maximum principle, recalled below. Let the system be autonomous, so that:

(8) F(z, ż,u) = 0

or, in a more useful way:

(9) ż = f(z,u)

with f : Rn×Rp −→ Rn. Named with Λ the vector of Lagrange multipliers,
let

(10) H [Λ, f(z,u)]
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be the Hamiltonian of the controlled system. The Pontryagin maximum
principle states that if u∗, z∗ are solution of the optimal control Mayer
problem, then:

(11) ∃Λ ∈ C1,Λ 6= 0 : ∀t ∈ [t1, t2] , ż =
∂H

∂Λ
, Λ̇ = −∂H

∂z
and
(12)
∀t ∈ [t1, t2]H [Λ, f(z∗,u∗)] = sup {H [Λ, f(z∗,u∗)] : u ∈ U} = M [Λ, z∗(t)]

Besides, the transversality conditions must be added. Such principle gives
only necessary conditions for optimality. After the concise introduction ex-
plaining some basic concepts about the optimal control theory, it is possible
to write the system of motion equations for the analysis of the transfer tra-
jectories. Transfers has been analyzed under the following hypothesis: 1)
Earth and Mars (Jupiter) orbits are circular and coplanar; 2) The transfer
segment begins at 1.00 A.U. (the mean Earth orbit radius); 3) The transfer
segment ends once the spacecraft reaches 1.52 A.U. (the mean Mars orbit
radius) or 5.24 A.U. (the mean Jupiter radius), being the spacecraft velocity
parallel to the target one.

Even if such hypothesis could appear too strict for the general problem
of transfer optimization, the results attainable allow to carry out satisfying
estimations of rockets performances.

The first-order differential equation system for the co-planar transfer
problem is thus the following:

(13)



dr
dt = ṙ
dϑ
dt = ϑ̇
dṙ
dt = ϑ̇r2 − µ

r2
+ fr

m
dϑ̇
dt = −2ϑ̇ ṙr + fϑ

m
dm
dt = −τ |k|

being r, ϑ the spacecraft polar coordinates in an heliocentric reference
frame, ṙ, ϑ̇ their temporal derivatives, m the mass value, µ the Sun gravita-
tional parameter, fr, fϑ the thrust components, τ an on-off switch function
and finally k represents the absolute mass variation with respect to time.
Analogies with the formalism introduced in the previous paragraph are ev-
ident: the state vector z consists of

{
r, ϑ, ṙ, ϑ̇,m

}
,
{
dr
dt ,

dϑ
dt ,

dṙ
dt ,

dϑ̇
dt ,

dm
dt

}
are

the components of the ż vector and finally {fr, fϑ} represent the force vec-
tor u. It is important to notice that {fr, fϑ} values can be expressed by:

(14) fr = τ
T

m
, fϑ = 0
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assuming a purely radial thrust, or by:

(15) fr = fr,0

[
1 + a1(

fϑ
fr,0

) + a2(
fϑ
fr,0

)2

]
, fϑ 6= 0

if a small dipole tilt is allowed.
Beside the differential equation system 13, it is necessary to include

also the derivatives of the Lagrange multipliers so that conditions stated by
the Pontryagin maximum principle are satisfied. Let

{
λr, λϑ, λṙ, λϑ̇, λm

}
be the components of the Λ vector and so the Lagrange multipliers of
dr
dt ,

dϑ
dt ,

dṙ
dt ,

dϑ̇
dt ,

dm
dt respectively; let also be

(16) J =

tf∫
t0

L, dt = tf − t0

the cost function to be optimized, with L = 1, according to the particular
problem chosen for the analysis. The Hamiltonian functionH shall therefore
assume the form:

(17) H [Λ, ż] = λr
dr

dt
+ λϑ

dϑ

dt
+ λṙ

dṙ

dt
+ λϑ̇

dϑ̇

dt
+ λm

dm

dt
+ L

Once obtained an expression for H and J , it is necessary to prove that
conditions 11 and 12 posed by the Pontryagin principle have been satisfied.
First of all, let us consider the expression 11. It is evident that such for-
mulation satisfies condition ż = ∂H

∂Λ , as can be easily showed. To meet the
further conditions according to Λ̇ = −∂H

∂z it shall be:

(18)



dλr
dr = −∂H

∂r = −λṙ
(
ϑ̇2 + 2 µ

r3

)
− λϑ̇

(
2ϑ̇ ṙ

r2
− fϑ

r2m

)
dλϑ
dt = −∂H

∂ϑ = 0
dλṙ
dt = −∂H

∂ṙ = −λr
dλϑ̇
dt = −∂H

∂ϑ̇
= −λϑ

dλm
dt = −∂H

∂m = 1
m2 (λrfr + λϑfϑ)

Until now only condition 11 has been verified. To satisfy the constraint
given by 12, the thrust components fr, fϑ must be proportional to the
λṙ, λϑ̇ Lagrange multipliers: of course such condition, which holds when
thrust direction can be varied, cannot be applied as is when considering
M2P2. By assuming a purely radial thrust, the condition 12 turns into:

(19)
{
τ = 1, if (λrT − λm |k|) > 0
τ = 1, if (λrT − λm |k|) ≤ 0
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If the second model is considered, the thrust component fr, fϑ must be
proportional to the λṙ, λϑ̇ only if:

(20) arctan
(∣∣∣∣fϑfr

∣∣∣∣) < δ

being δ the cone angle within which thrust direction is confined. Let us
assume 0 ≤ fϑ ≤ fϑ,max; let also f∗ϑ be the optimal value of fϑ. If one
defines:

(21)


A = τ λṙ

m
a2
fr,0

B = τ
(
λṙ
m a1 + λϑ̇

rm

)
C = τ

(
λṙ
m fr,0 − λ |k|

)
H∗ (fϑ) = A (f∗ϑ)2 +B (f∗ϑ) + C

optimal fϑ can be evaluated easily as follows:

(22) τ 6= 0⇒ f∗ϑ =


− B

2A , ifA < 0H∗ (− B
2A

)
> 0

0, ifA > 0H∗ (0) > max [H (fϑ,max) , 0]
fϑ,max, ifA > 0H∗ (fϑ,max) > max [H (0) , 0]

As for the transversality conditions, it shall be:

(23) H (t = t0) = 0

A proper choice of the initial values of the Lagrange multipliers shall ensure
that 11, 12 and the transversality conditions are satisfied.

3.2. Test Case 2: escape from the Solar System

The radial, continuous thrust allows to reach quickly the escape condi-
tions from the Solar System; it is also possible to increase the hyperbolic
excess by keeping an high magnetic field around the spacecraft, so to receive
a further acceleration through the M2P2 system even after the escape con-
ditions have been reached. This allows to reduce the time needed to reach
the Solar System boundaries, as it will be shown in the following Section.

4. Results and discussion

4.1. Test Case 1: minimum time interplanetary transfer

As for the interplanetary transfer towards Mars, Fig. 4.1 shows some
transfer trajectories by changing the value of the initial spacecraft mass,
in the range between 100 - 1000 kg. The "firing" period ranges between 6
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- 65% of the overall transfer time, according to the initial mass value. Fig.
4.1 shows the time needed to perform the trip. It is evident that by rising
the spacecraft mass, also the transfer time increases; in the considered mass
range, the transfer time is always lower than that required for an Homhann
transfer, equal to 259 days. To be noticed that a further ∆V is required to
permit the spacecraft injection into a capture trajectory, since the M2P2
acceleration is almost completely along the radial direction. Assuming an
initial spacecraft mass equal to 1000 kg, such impulse along the spacecraft
velocity vector would be equal to 4.52 km/sec (to note that the overall
∆V for an Homhann transfer is equal to 5.59 km/sec). This implication
makes M2P2 propulsion system not suitable for interplanetary transfers.
Analogous considerations can be done as for the transfer to Jupiter.

4.2. Test case 2: escape from the Solar System

In Fig. 4.2 a plot of the escape trajectories is given; results from simula-
tions are shown in Fig. 4.2. As for the escape from the Solar System, M2P2
system allows to maintain a radial constant acceleration until plasma has
been consumed completely. For these simulation plasma mass percentage
was assumed to be 30% of the whole spacecraft mass; this hypothesis is in
full agreement with the system requirements and it has been already ver-
ified in other papers. For a 1000 kg spacecraft, the time needed to reach
Pluto orbit is about 6.6 years, with a plasma consumption equal to the 30%
of the initial spacecraft mass. An impulsive manoeuvre for the injection
into an escape parabola would require a ∆V of 12 km/sec, corresponding
to 930 kg of propellant.

5. Conclusions

The M2P2 is a propulsion system allowing to execute manoeuvre re-
quiring a thrust level in the range (0.1 - 1 N) with a reduced propellant
(plasma) consumption. As the simulations showed, such propulsion system
is not suitable for interplanetary transfer, since the acceleration it is able to
provide is mostly in the radial direction. As for the escape from the Solar
System, M2P2 proved to be efficient, since no tangential manoeuvre is re-
quired. Mass consumption and the required time are sensibly smaller than
those necessary when employing a chemical propulsion system.
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Fig. 1. Transfer trajectories towards Mars according to different values of the starting
spacecraft mass, in the range 100 - 1000 kg. The dashed segments in the figure represent
the trajectory arches where M2P2 was active. Thrust is assumed to be along the radial
direction.

Fig. 2. Comparison between the transfer time vs the initial spacecraft mass, considering
the two different thrust models. No relevant differences have been observed.
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Fig. 3. Transfer trajectories towards Jupiter according to different values of the starting
spacecraft mass, in the range 100 - 1000 kg. The dashed segments in the figure represent
the trajectory arches where the M2P2 was active. Thrust is assumed to be along the
radial direction.

Fig. 4. Comparison between the transfer time vs the initial spacecraft mass, in the range
100 - 1000 kg, considering the two different thrust models. No relevant differences have
been observed.

11



A. Bolle, C. Circi

Fig. 5. Escape trajectories according to different values of the starting spacecraft mass,
in the range 100 - 1000 kg. The dashed segments in the figure represent the trajectory
arches where the M2P2 was active. In the enlargement, the early phase of the transfer.

Fig. 6. Comparison between the escape time vs the initial spacecraft mass, considering
the two different thrust models. No relevant differences have been observed.
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