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Abstract.

In this paper we consider the numerical approximation of hypersingular integral equations

coming from Neumann two-dimensional elliptic problems defined on a half-plane by using a

Petrov-Galerkin infinite BEM approach as discretization technique. An analysis of the singu-

larities, arising during the double integration process needed for the generation of the stiffness

matrix elements related to the infinite mesh elements, is carried out and consequently efficient

quadrature schemes are proposed. Several numerical results are presented.
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1. Introduction

Modelling unbounded domains is an important issue in engineering: electromagnetism,
fluid dynamics, elastodynamics, soil and soil-structure mechanics are research areas where
unbounded domains are of usual concern. During these last years, potential, linear elas-
ticity and Helmoltz problems on a half-plane, with Dirichlet or pure Neumann boundary
conditions, reformulated in terms of boundary integral equations on the real line, have
been investigated (see e.g. Ref. 1,2,3,4) and some numerical treatments in the form of
boundary element methods have been suggested. Fundamental solutions for a half-space
can be employed to solve the problem along the boundary.5 Such an approach is not
much used, due to the complexity of the involved kernels. An interesting alternative is
represented by full-space solution coupled with infinite boundary elements, i.e. special el-
ements extending to infinity, proposed in Ref. 6 to model the unknown displacement field
along the boundary. These elements extend to infinity the discretization domain: a survey
on this relatively recent topic can be found in Bettess’ book.7 In Ref. 8 efficient numeri-
cal integration schemes have been applied to the infinite element defined in Ref. 6. In all
cited works, numerical analysis and numerical tests are based on the boundary element
collocation method. In the present work, using the fundamental solutions for a full-space,
we consider hypersingular integral equations coming from Neumann two-dimensional el-
liptic problems defined over a half-plane with unbounded boundary coincident with the
real line and we use a suitable Petrov-Galerkin infinite BEM approach as discretization
technique. An analysis of the singularities, arising during the double integration process
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needed for the generation of the stiffness matrix elements related to the infinite mesh el-
ements is carried out. Then, a generalization of numerical quadrature schemes, appeared
in Ref. 9, is proposed to compute the above-mentioned integrals. In the last Section,
numerical results are presented.

2. Model problem and its discretization

Let Ω ⊂ R
2 be an half-plane with unbounded linear boundary Γ = R. We consider the

Neumann boundary value problem:

(1)

{

Lu(x) = 0 forx ∈ Ω

p(x) := (Txu)(x) = p(x) forx ∈ Γ
,

where L is linear elliptic partial differential operator of second order acting on u, describ-
ing the field equation inside the domain Ω, (Txu)(x) the co-normal derivative of u for
x ∈ Γ and p is a given function. The behavior of solutions at infinity is prescribed too,
and it can be, for instance, one of the following:

(2) u(x) = C ln(|x|) +O(1) for |x| → ∞ ; u(x) = Cθ +O(|x|−1) for |x| → ∞

where C,Cθ are suitable constants, the latter dependent on the inclination of the radius
stemming from the origin of the reference system with an axis lying on Γ. Problem (1)

may be rewritten in the integral form:

(3)
1

2
p(x) = (K ′p)(x) − (Du)(x), x ∈ Γ,

using the adjoint double-layer potential and the hypersingular integral operator:

(K
′

p)(x) = −
∫

Γ
TxU(x, y)p(y) dγy , (Du)(x) = =

∫

Γ
TxTyU(x, y)u(y) dγy .

The operator K ′ is defined by Cauchy singular integral and D is defined by a hypersingu-
lar finite part integral in the sense of Hadamard10 due to the respective integral kernels
singularity. In fact, the definition of these boundary potentials is based on a fundamental
solution U(x, y) of the operator L, which presents a log-singularity for x = y; as a con-
sequence, for instance, integral kernel in D behaves like O(|y − x|−2) as y → x. By using
Neumann boundary datum, we obtain from (3) a boundary integral equation of the first
kind for the unknown function u on Γ, of the form:

(4) (Du)(x) = f(x), x ∈ Γ ,

where f = −1
2 p+K ′ p. Note that in scalar problems the opearator K ′, defined on the real

line, vanishes.
Now, denoting with D′(Γ) the space of distributions on Γ and introducing the weight
functions (1 + ρ2)α, α ∈ R, where, for ξ ∈ R, ρ(ξ) = |ξ|, let us consider suitable weighted
Hilbert spaces on the real line, as defined in Ref. 11:

H
1

2

0 (Γ) :=
{

u ∈ D′(Γ) : (1 + ρ2)−1/4 u ∈ L2(Γ),
∫

R+

∫

R

|u(ξ + t) − u(ξ)|2
t2

dξ dt <∞
}

,

H
1

2

β (Γ) :=
{

u ∈ D′(Γ) : (1 + ρ2)β/2 u ∈ H
1

2

0 (Γ)
}

, β ∈ R.
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Then, having set:

W =: H
1

2

β (Γ), β < 0, V := H
1

2

0 (Γ)

and denoted with V ′ := (H
1

2

0 (Γ))′ the dual space of V with respect to the classical duality
product in L2(Γ), it holds:

(5) D : W → V ′

and the weak form of (4) reads:

given f ∈ V ′, find u ∈W such that

(6) (Du, v)L2(Γ) = (f , v)L2(Γ) , ∀ v ∈ V.

Problem (6) admits a unique solution up to an additive constant.12 For a Petrov-Galerkin
BEM (PGBEM) discretization of problem (6), let us consider a bounded subset ΓB ⊂
Γ, where we introduce a not necessarily uniform mesh Th = {e1, · · · , eMh

}, such that
length (ei) ≤ h and ΓB = ∪Mh

i=1ei. Let us denote by Pr, r ≥ 1, the space of polynomials of
degree less than or equal r, and consider the space:

Xr
h = {vh ∈ C0(ΓB) : vh|ei

∈ Pr,∀ ei ∈ Th}

of finite elements of degree ≤ r related to Th. Further, we define two unbounded elements,
let’s say e−∞, e+∞, such that: e−∞∪e+∞ = Γ\ΓB . Denoted by xi, i = 1, · · · , Nh, the nodes
on ΓB, we introduce the finite-dimensional space of test functions Vh = span{ϕi, i =

1, · · · , Nh} ⊂ V, where ϕi, i = 2, · · · , Nh − 1, are the usual finite element basis functions,
obtained with the standard assembling of the local lagrangian polynomials of degree ≤ r

introduced on each element of the mesh Th. Functions ϕ1, ϕNh
have unbounded supports,

given by e−∞ ∪ e1, eMh
∪ e+∞ respectively, and must satisfy the decaying property:

ϕi(x) = O(|x|α), α < 0, |x| → ∞, i = 1, Nh.

In any case, ϕi(xj) = δij , i, j = 1, · · · , Nh. Similarly, we consider the finite-dimensional
space of trial functions Wh = span{ψi, i = 1, · · · , Nh} ⊂W, where ψi = ϕi, i = 2, · · · , Nh−1.
Functions ψ1, ψNh

have unbounded supports, given by e−∞ ∪ e1, eMh
∪ e+∞ respectively,

and assume the same known behavior of the solution of (1) at infinity. Further, ψi(xj) =

δij , i, j = 1, · · · , Nh.

Remark 2.1. Local basis functions on each mesh element can be obtained as usual,
suitably ”lifting” functions defined on the reference element e = (0, 1). In particular, on
the infinite element e+∞ = (a,+∞), a > 0, one can define respectively trial and test
functions starting from functions, for instance, of the type:

(7) ψ̃(s) = 1 − log(1 − s) or ψ̃(s) = 1, s ∈ (0, 1),

(8) ϕ̃(s) = 1 − s, s ∈ (0, 1),

and then using the mapping e+∞ → e defined by s = 1 − a
x . Similarly, we can define trial

and test functions on e−∞.
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At this stage, we can write the Petrov-Galerkin finite-dimensional discretization of the
weak problem (6):

given f ∈ V ′, find uh ∈Wh such that

(9) (Duh, vh)L2(Γ) = (f , vh)L2(Γ) , ∀ vh ∈ Vh.

Note that the algebraic restatement of (9) leads to a system of Nh linear equations of the
form:

(10) AX = F

in the Nh unknowns Xi = uh(xi), i = 1, · · · , Nh, where the elements of A are double inte-
grals with hypersingular kernel. Since block A(2 : Nh−1, 2 : Nh−1) coincides with the stan-
dard symmetric Galerkin BEM stiffness matrix defined in correspondence to a bounded
boundary, for the generation of its elements we can use the efficient quadrature schemes
proposed in Ref. 9. For the remaining matrix elements Aij, i = 1, Nh, j = 1, · · · , Nh and
i = 1, · · · , Nh, j = 1, Nh, we can use the classical FEM technique, working element by
element on the mesh introduced on Γ and then suitably assembling partial results. In
this way, we reduce their evaluation to the computation of double integrals of the form:

(11)
∫

em

ϕi(x)

∫

eℓ

TxTyU(x, y)ψj(y) dγy dγx.

We observe that this decomposition is possible if, when em = eℓ, we define both the inner
and outer integrals in (11) as finite parts, while when em, eℓ are consecutive, only the
outer integral in (11) is defined in the finite part sense. When em ∩ eℓ = ∅, the kernel
singularity does not effectively arise, and the double integral in (11) can be efficiently
treated by the product of two standard Gaussian quadrature rules. Further, when both
em, eℓ are bounded, we can apply numerical schemes presented in Ref. 9. Hence, in the
sequel, we will illustrate quadrature schemes for the approximation of double integrals
over consecutive or coincident mesh elements, when one or both are unbounded.
Finally, note that, since system (10) is singular, we can proceed as described in Ref. 13
for its regularization, obtaining the approximate solution uh such that

∫

ΓB

uh(x) dγx = 0.

3. Basic definitions and quadrature rules

Here, we will introduce some typical finite part integrals over unbounded intervals of
the real line, which we will encounter in the inner and outer integrations. Firstly, we
define for a ∈ R

+ and x ∈ (a,+∞) :

=

∫ +∞

a

1

(y − x)2
dy = lim

ǫ→0+

[

∫ x−ǫ

a

1

(y − x)2
dy +

∫ +∞

x+ǫ

1

(y − x)2
dy − 2

ǫ

]

= lim
ǫ→0+

[

∫ x−ǫ

a

1

(y − x)2
dy + lim

M→+∞

∫ M

x+ǫ

1

(y − x)2
dy − 2

ǫ

]

=
1

a− x
.(1)

The standard change of variable t = a
y leads to:

(2) =

∫ +∞

a

1

(y − x)2
dy =

a

x2
=

∫ 1

0

1

(t− a
x)2

dt
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where the right-end side can be evaluated using the classical definition of Hadamard finite
part integral over a bounded interval14 .

If f ∈ H
1

2

β (Γ), β < 0, then we can generalize the definition (1) in the following way: let
x ∈ (a,+∞), a ∈ R

+, then

=

∫ +∞

a

f(y)

(y − x)2
dy = −

∫ +∞

a

f(y) − f(x)

(y − x)2
dy + =

∫ +∞

a

f(x)

(y − x)2
dy(3)

= lim
ǫ→0+

[

∫ x−ǫ

a

f(y) − f(x)

(y − x)2
dy + lim

M→+∞

∫ M

x+ǫ

f(y) − f(x)

(y − x)2
dy

]

+
f(x)

a− x
.

For the outer integration in (11), we will have to deal with finite part integrals of the

form =

∫ +∞

a

f(x)

x− a
dx, where a ∈ R

+ and f ∈ H
1

2

0 (Γ). We will define them as:

=

∫ +∞

a

f(x)

x− a
dx = lim

ǫ→0+

[

∫ +∞

a+ǫ

f(x)

x− a
dx+ f(a) ln(ǫ)

]

= lim
ǫ→0+

[

lim
M→+∞

∫ M

a+ǫ

f(x)

x− a
dx+ f(a) ln(ǫ)

]

.(4)

Note that for the standard change of variable s = 1 − a
x it holds:

(5) =

∫ +∞

a

f(x)

x− a
dx = =

∫ 1

0

1

s

[ 1

1 − s
f(

a

1 − s
)
]

ds+ f(a) ln(a).

We observe that for x ∈ (−∞, b), b ∈ R
−, definitions analogous to (1), (3), (4) can be in-

troduced.
To compute integrals (11) required by Petrov-Galerkin method, we will use certain prod-
uct quadrature rules of interpolatory type, based on the zeros of Legendre polynomials.
They are of the form:

(6)
∫ +1

−1
k(s, t)f(t)dt =

n
∑

i=1

wIi (s)f(ti) +RIn(f ; s)

and are obtained by replacing f(t) by its Lagrangian interpolation polynomial associated
with the nodes {ti}ni=1. These are the very familiar zeros of Legendre polynomial Ln(t) of
degree n. The weights {wIi (s)}ni=1 have been obtained in Ref. 9 for many kernels of interest
in the applications: in particular, for kernels of type 1

t−as

, and 1
(t−as)2+b2

s

which will arise
in the following Section. Convergence results are reported in Ref. 15.
A second rule we shall need is a formula of Gauss-Radau type for Hadamard finite-part
(HFP) integrals, proposed in Ref. 16:

(7) =

∫ 1

0

f(s)

s
ds = wGR0 f(0) +

n
∑

i=1

wGRi f(sGRi ) +RGRn (f)

where {sGRi }ni=1 denote the Legendre zeros mapped onto (0, 1), wGRi =
λi

2sGRi
, i = 1, · · · , n

and wGR0 = −∑n
i=1w

GR
i . This quadrature formula is obtained by replacing f(s) by its

n-th degree interpolation polynomial associated with the nodes {0, sGR1 , · · · , sGRn } and it
is exact whenever f(s) is a polynomial of degree ≤ 2n. Convergence results are proved in
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Ref. 16.
Further, the outer integral in (11) often presents integrand functions having at most

logarithmic endpoint singularities. Hence, considering for
∫ 1

0
f(s) ds, where f(s) is smooth

except in 0, 1, the change of variable s = φ(s̃), with φ : (0, 1) → (0, 1), φ′(s̃) ≥ 0, one obtains:

(8)
∫ 1

0
f(s)ds =

∫ 1

0
f(φ(s))φ′(s)ds.

If furthermore φ(i)(0) = 0, i = 1, · · · , p − 1, p ≥ 1 and φ(i)(1) = 0, i = 1, · · · , q − 1, q ≥ 1,
we can make the integrand in the right-end side of (8) as smooth as we like simply by
taking integers p, q sufficiently large and numerically evaluate this integral by means of a
standard Gaussian rule. We have used the following transformation, proposed in Ref. 17:

(9) φ(s) =
(p+ q − 1)!

(p− 1)!(q − 1)!

∫ s

0
up−1(1 − u)q−1du

where the integral can be evaluated exactly up to machine precision by means of a ⌊p+q2 ⌋-
points Gauss-Legendre rule.

4. Evaluation of Infinite PGBEM matrix elements

Before starting this Section, we emphasize that in the sequel we will consider the hyper-
singular kernel |y − x|−2, but the proposed numerical schemes can be applied in presence
of more general kernels having the same type of singularity. As already stated, we will
consider separately double integrals of the form:

a) =

∫

e+∞

ϕ̃e+∞
(x) =

∫

e+∞

ψ̃e+∞
(y)

|y − x|2 dγy dγx(1)

b) =

∫

eM
h

ϕ̃eM
h
(x)

∫

e+∞

ψ̃e+∞
(y)

|y − x|2 dγy dγx(2)

c) =

∫

e+∞

ϕ̃e+∞
(x)

∫

eM
h

ψ̃eM
h
(y)

|y − x|2 dγy dγx(3)

having indicated with ϕ̃eM
h
, ϕ̃e+∞

local basis test functions defined on mesh elements
eMh

, e+∞, respectively. A similar notation is used for local basis trial functions. Finally,
it is clear that the analysis can be done exactly in the same way for the elements e−∞, e1.

Case a) Let us consider the mesh element e+∞ = (a,+∞), a > 0. With the standard
changes of variable x = a

1−s , y = a
1−t , we reduce to the evaluation of the double integral

(4) Ia = =

∫ 1

0
ϕ̃(s) =

∫ 1

0

ψ̃(t)

(t− s)2
dt ds.

To efficiently evaluate (4), we rewrite it in the form:

Ia =

∫ 1

0
ϕ̃(s) −

∫ 1

0

1

t− s

ψ̃(t) − ψ̃(s)

t− s
dt ds−

∫ 1

0

ϕ̃(s)

1 − s
ψ̃(s) ds

− =

∫ 1

0

1

s
ϕ̃(s)ψ̃(s) ds =: Ia1 + Ia2 + Ia3 .
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Recalling (7), if ψ̃(t) = 1, integral Ia1 ≡ 0, otherwise it could be evaluated using product

rule (6) with kernel k(s, t) = 1
t−s , but since the remaining integrand function ψ̃(t)−ψ̃(s)

t−s
presents a logarithmic singularity at t = 1, the number of nodes to reach the required
accuracy would be too high. In this case, we introduce the change of variable t = 1 − z2

to eliminate the weak singularity in t = 1 and, having set as =
√

1 − s, we obtain:

(5) Ia1 = 2

∫ 1

0
ϕ̃(s) −

∫ 1

0

1

z − as

z[ψ̃(1 − z2) − ψ̃(s)]

(z2 − a2
s)(z + as)

dz ds.

The inner integral can be evaluated using product rule (6) with kernel k(s, z) = 1
z−as

and
a number of nodes such that the required accuracy is achieved. For the outer integral,
which presents an integrand with a log-singularity for s = 0 and a behavior of type
(1 − s) log(1 − s) in s = 1, first we perform the change of variable (8), then we use Gauss-
Legendre rule.
Recalling that ϕ̃(1) = 0 (see (8)), integrand in Ia2 presents at most a log-singularity for
s = 1, so we can use the smoothing change of variable (8) followed by Gauss-Legendre
rule. Integral Ia3 can be evaluated with the HFP quadrature formula (7), with a number
of nodes such that the exact result (up to machine precision) is obtaind in the case of
constant trial function or such that the required accuracy is achieved otherwise.

Case b) We consider the aligned consecutive elements eMh
= (a − h, a), e+∞ = (a,+∞),

with a > 0. With the standard changes of variable x = a − hs, y = a
1−t , we reduce to the

evaluation of the double integral:

(6) Ib = ah =

∫ 1

0

ϕ̃r(1 − s)

(a− s h)2

∫ 1

0

ψ̃(t)

(t− as)2
dt ds,

having set as = − s
s−a/h and having indicated with ϕ̃r(s) the generic lagrangian polynomial

of degree r defined on the reference interval (0, 1). To efficiently evaluate (6), we rewrite
it in the form:

Ib =

∫ 1

0

ah ϕ̃r(1 − s)

a− s h

∫ 1

0

1

t− as

ψ̃(t) − ψ̃(as)

(a− s h)t+ h s
dt ds

+ =

∫ 1

0

1

s
ϕ̃r(1 − s) ψ̃(as) ds =: Ib1 + Ib2.

Recalling (7), if ψ̃(t) = 1, integral Ib1 ≡ 0, otherwise it could be evaluated using product

rule (6) with kernel k(s, t) = 1
t−as

, but since the remaining integrand function ψ̃(t)−ψ̃(as)
(a−s h)t+h s

presents a logarithmic singularity at t = 1, we can operate as in the case a). Introducing
the change of variable t = 1− z2 to eliminate the weak singularity in t = 1 and having set
bs =

√
1 − as, we obtain for Ib1 the expression:

−2 ah

∫ 1

0

ϕ̃r(1 − s)

a− s h

∫ 1

0

1

z − bs

z[ψ̃(1 − z2) − ψ̃(as)] dz ds

((a− s h)(1 − z2) + h s)(z + bs)
.

The inner integral can be evaluated using product rule (6) with kernel k(s, z) = 1
z−bs

, with
a number of nodes such that the required accuracy is achieved. For the outer integral,
which presents a log-singularity for s = 0, first we perform the change of variable (8),
then we use Gauss-Legendre rule. Integral Ib2 can be computed with the HFP quadrature
formula (7).

Case c) is treated in a way similar to that one just explained in case b).



8 A. Aimi et al

5. Numerical results

At first, we show results related to the numerical evaluation of the integral

=

∫ +∞

1

1

x
=

∫ +∞

1

1

(y − x)2
(1 + ln(y)) dy dx,

which is converted in the form (4) and then treated as explained in case a). In Tables 1, 2,
we present absolute errors EIa

i
, i = 1, 2, (with respect to the analytical result) produced in

the numerical evaluation of Ia1 , I
a
2 respectively, for different values of quadrature parame-

ters: in particular, Nt, Ns indicate the number of nodes for the inner and outer integrals,
while p, q denote the parameters chosen in (9). The computation has been carried out in
double precision arithmetic and the symbol ’−−’ means that the single precision accuracy
has been achieved. For Ia3 the single precision accuracy has been obtained with 32 nodes.

Table 1. Absolute errors produced in the numerical evaluation of Ia
1
, for different adopted

kernels and various quadrature parameters.

Nt Ns p EIa

1
( 1

t−s
) EIa

1
( 1

z−as
) Nt Ns p EIa

1
( 1

t−s
) EIa

1
( 1

z−as
)

q = 1 q = 2

32 16 2 3.1727E− 3 4.8310E− 5 32 16 2 6.7868E− 3 2.6006E− 5
3 4.8968E− 3 1.9297E− 5 3 3.3381E− 3 2.6743E− 5

64 16 2 7.1697E− 4 2.7347E− 5 64 16 2 1.4857E− 3 3.9307E− 5
3 9.2381E− 4 3.1624E− 5 3 2.6921E− 3 4.3725E− 6

q = 3 q = 4

32 16 2 4.2954E− 3 3.9176E− 5 32 16 2 5.3779E− 3 9.7830E− 5
3 7.7027E− 3 4.7108E− 5 3 8.0173E− 3 5.8219E− 5

64 16 2 1.1645E− 3 8.0897E− 5 64 16 2 1.1501E− 3 1.3540E− 4
3 1.8363E− 3 −− 3 1.8796E− 3 2.8048E− 6

Table 2. Absolute errors produced in the numer-
ical evaluation of Ia

2
.

p = 1

Ns q EIa

2
Ns q EIa

2

2 1.9554E− 4 2 1.3610E− 5
8 3 8.2795E− 6 16 3 1.4946E− 7

4 5.8332E− 7 4 −−

Further, we show some results related to the numerical evaluation of the integral

=

∫ 1

0.9

x− 0.9

0.1

∫ +∞

1

1

(y − x)2
(1 + ln(y)) dy dx
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which is converted in the form (6) and then treated as explained in case b). In Table 3 we
present absolute errors (with respect to the analytical result) produced in the numerical
evaluation of Ib1, for different values of quadrature parameters; in particular: Nt, Ns indi-
cate the number of nodes for the inner and outer integrals, respectively, while p, q denote
the parameters chosen in (9).

Table 3. Absolute errors for Ib
1
.

q = 1

Nt Ns p EIb

1
( 1

t−as
) EIb

1
( 1

z−bs
)

32 16 2 2.4986E− 5 1.4294E− 6
3 2.6613E− 5 −−

64 16 2 5.0880E− 6 1.3642E− 6
3 6.5301E− 6 −−

Finally, as test problem we consider a Neumann potential problem, defined on the upper
half plane, deduced from Ref. 18, where the boundary datum given on Γ = R is:

(1) p(x) =











0 for x < −1

1 for −1 < x < 0
2
π (− 1√

x
+ arctan[ 1√

x
]) for x > 0

.

The analytical solution of the problem, up to an additive constant C∗, is

(2) u(x) =

{

1
2π{4

√−x+ (1 + x) log[ (1+
√
−x)2

(1−
√
−x)2 ]} for x ≤ 0

0 for x > 0

and presents a sudden growth around x = 0. For the numerical solution we have considered
ΓB = [−5, 5], equipped by a mesh made up by 75 nodes, geometrically graded towards
zero where the boundary datum has a square root singularity, and related linear test and
shape functions. On infinite elements we have chosen constant shape and decaying test
functions as given in (7), (8), respectively. With infinite PGBEM, we have generated a
linear system of order 75, regularized with the procedure mentioned at the end of Sect.
2. In Fig. 1 we show the approximate solution, related to C∗ = −0.181978, together with
the corresponding absolute error.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.5

0

0.5

1

−5 −4 −3 −2 −1 0 1 2 3 4 5
10

−4

10
−3

10
−2

10
−1

10
0

Fig. 1. Numerical solution of the test problem and corresponding absolute error
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