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1 Introduction

The mathematical modelling for practical purposes of multi-component gaseous flows
with chemical reactions is an important research fields, and in this context several kinetic
approaches have been developed in the last decades, starting from the pioneering work by
Prigogine-Xhrouet ([7]). The increasing interest on kinetic models is mainly motivated
by the fact that they enable the macroscopic laws to be derived from elementary princi-
ples, providing consistent macroscopic theories in the hydrodynamic limit, and moreover
they allow to deduce transport and structure coefficients, that are not directly obtain-
able from macroscopic approaches. The so called BGK equations ([3]) constitute a well
known model of the nonlinear Boltzmann equation and a simpler tool of investigation in
particular for reacting gaseous flows, for which the collisional part of the relevant kinetic
equations becomes much heavier. A recent consistent BGK-type approach for inert gas
mixtures and its extension to reacting gas mixtures, according to a Boltzmann-like kinetic
model has been developed in [8] for a bimolecular reversible chemical reaction. These
models are based on the simple idea of introducing only one BGK collision operator for
each species s, taking into account all interactions with whatever species r.
In this communication we propose a numerical strategy to simulate the reactive BGK
equations in more general space-dependent conditions. In particular we focus here on
problems with axial symmetry, which are of interest in many applications like for instance
the classical evaporation-condensation problem. The method is based on time splitting
techniques, which are widely used in the numerical analysis of the classical Boltzmann
equation ([4]), but their application to kinetic systems describing reacting gas mixtures
has not been already discussed, to our knowledge. The time splitting approach has the
advantage of simplifying the problem by treating separately the two steps, the convection
or transport step, which solves the free-streaming equations, and the collision step, which
solves the spatially homogeneous BGK equations. The numerical solution of this latter
step, which can be regarded as a Cauchy problem, is evaluated with explicit Runge-Kutta
(RK) schemes of different order. Numerical results on time-dependent Riemann problem
for mixture of 4 gases are presented.

2 Model equations and numerical approximation

The BGK approximation introduced in [6] for the chemical reaction model of Boltzmann-
type is described by the following kinetic equations

(2.1)
∂f s

∂t
+ v ·

∂f s

∂x
= νs

(

Ms − f s
)

, s = 1, . . . , 4,
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where f s are distribution functions and Ms is an auxiliary local Maxwellian depending
on velocity vector variable v, masses ms and disposable parameters ns,us, Ts:

(2.2) Ms = ns

(

ms

2πKTs

)
3

2

exp

[

−
ms

2KTs
(v − us)

2

]

, s = 1, . . . , 4.

At last in (2.1), νs represents the inverse of the s-th relaxation time, possibly depend-
ing on macroscopic fields, but independent of v. The above auxiliary fields ns, us, Ts

are determined from the corresponding actual moments of the distribution functions f s

(namely number density ns, mass velocity us and temperature T s of each component)
by requiring that the exchange rates for mass, momentum and total (kinetic plus chemi-
cal) energy prescribed by (2.1) coincide with those deduced from the reactive Boltzmann
equations (see [6] for a detailed derivation). We consider here the application of BGK
equations (2.1) to problems with axial symmetry with respect to an axis (say, x1 ≡ x),
in the sense that all transverse spatial gradients vanish, and the gas is drifting only in
the axial direction. In such cases, distribution functions f s depend on the full velocity
vector v, but dependence on the azimuthal direction around the symmetry axis is such
that all transverse components of the macroscopic velocities us vanish (i.e. us

2 = us
3 = 0).

Let us introduce the new unknowns

(2.3) φs
1(x, v, t) =

∫

R2

f s dv2dv3, φs
2(x, v, t) =

∫

R2

(v2
2 + v2

3)f
s dv2dv3,

each depending only on one space and one velocity variable. From the system (2.1) we
can obtain the following system of BGK equations for the unknown vector φs = (φs

1, φ
s
2)

⊤

(Chu’s reduction [5]), coupled with initial conditions

(2.4)















∂φs

∂t
+ v

∂φs

∂x
= νs(φ

e

s
− φs) t > 0, x ∈ R, v ∈ R, s = 1, . . . , 4

φs(x, v, 0) = φs

0
(x, v)

.

The BGK equations (2.4) drift the relaxation process towards the vector functions φe

s
=

(

φe
s,1, φ

e
s,2

)⊤

, which is obtained by Chu’s transform of (2.2) and has the form

(2.5)
(

φe
s,1, φ

e
s,2

)⊤

=
(

Ms,
2KTs

ms
Ms

)⊤

, Ms = ns

(

ms

2πKTs

)1/2

exp
[

− ms

2KTs

(v − us)
2
]

.

This transformation reduces the auxiliary velocity to a scalar parameter us, owing to the
axial symmetry. To determine ns, us, Ts it is necessary first to compute the exchange
rates for the Boltzmann reactive model described in [6] and [8]. Such rates are known
analytically for Maxwell molecules, even in the chemical frame by assuming moderately
slow chemical reactions (for a detailed derivation see [6]). Those rates involve fundamental
macroscopic moments of distribution functions f s, which are given in terms of φs

1 and φs
2.

We point out that the unknowns φs
1 and φs

2 provide a reduced description of the velocity
distributions, if compared to f s, but they suffice for our purposes. The macroscopic
collision frequencies νs, which measure the strength at which BGK model equations push
distributions towards equilibrium, can be evaluated by a suitable estimation of the actual
average number of collisions taking place for each species (see [6]). It is remarkable that
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the consistency properties of the reactive BGK model, proved in [6], are independent
from the choice of macroscopic collision frequencies.

We rewrite here the system (2.4) pointing out, in particular, the dependence of the
vector functions φe

s
and of the macroscopic collision frequencies νs on the components

of the unknown vector solution Φ = (φ1, φ2, φ3, φ4)⊤. Hence, we consider the following
equivalent one-dimensional initial-value hyperbolic nonlinear problem

(2.6)















∂φs

∂t
+ v

∂φs

∂x
= νs(Φ)

[

φe

s
(Φ) − φs

]

, s = 1, · · · , 4; t > 0, x ∈ R, v ∈ R,

φs(x, v, 0) = φs

0
(x, v),

for the unknowns φs = (φs
1, φ

s
2)

⊤, s = 1, · · · , 4. Problem (2.6) can be rewritten in the
form

(2.7)















∂φs

∂t
= A[φs] +B[φs], s = 1, . . . , 4; t > 0, x ∈ R, v ∈ R,

φs(x, v, 0) = φs

0
(x, v),

where

A[φs] = −v
∂φs

∂x
, convection operator; B[φs] = νs(Φ)

[

φe

s
(Φ) − φs

]

, collision operator.

Therefore, in order to compute numerically the solution, it is usual to solve

∂φs

∂t
= A[φs] and

∂φs

∂t
= B[φs]

separately. This procedure is known as a splitting method and it is widely used in the
numerical analysis of the Boltzmann equation. The method consists of two steps, the
convection step, which solves the collision-less equation (free-transport equation), and the
collision step, which solves the space-homogeneous equation. Setting the solution Φ(t)
of the problem (2.7) as Φ(t) = St

A+B(Φ0), where: Φ0 = (φ1

0
, φ2

0
, φ3

0
, φ4

0
)⊤, the conventional

splitting method (CSM) is nothing more than (see [4]):

(2.8) S∆t
A+B = S∆t

A S∆t
B +O(∆t2) .

The accuracy per time step may be improved by Strang’s splitting method (SSM):

(2.9) S∆t
A+B = S

∆t/2
A S∆t

B S
∆t/2
A +O(∆t3).

For the numerical implementation of splitting techniques, at first, we have to define a
finite numerical domain in the phase space: [xL, xR]× [vL, vR] dependent on the problem
data: in particular the choice of [vL, vR] is related to the initial velocity distribution while
the choice of [xL, xR] depends on the observation time interval. Consequently, we impose
the following conditions (at infinity) for all v and t

φs(x, v, t) = φs(xL, v, t) x ≤ xL, φs(x, v, t) = φs(xr, v, t) x ≥ xR.

Let xr = xL + r∆x, r = 0, · · · , Nx and vq = vL + q∆v, q = 0, · · · , Nv, be uniform grids
defined in [xL, xR] and in [vL, vR], respectively. Having set ψs(xr, vq, 0) = φs

0
(xr, vq) and
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ti = i∆t, i = 0, · · · , N − 1, in the convection step, the problem is to evaluate the formal
solution at time ti+1, because it should be obtained from the initial condition evaluated
at time ti along the characteristic lines, but ψs is known only in the original nodes of the
grid. To overcome this difficulty, we have considered the following algorithm:
∗ compute the nearest grid point from xr − vq∆t, named xj ;

∗ compute ψs(xr − vq∆t, vq, ti) using Taylor expansion around xj truncated at a suitable
order p, with derivatives approximated with centered finite differences at the same accu-
racy (see [2]).
Note that for k = 2, 3, the order p is chosen such that: (∆x)p+1 ≤ (∆t)k , to preserve
the accuracy order per time step of the chosen splitting procedure. In order to avoid
numerical instability near spatial edges x = xL, x = xR, the extrapolation, which causes
the instability, is never used. Furthermore, for the same reason, it is useful to choose the
space and time steps satisfying the following Courant-Friedrichs-Lewy (CFL) condition:
∆x/2 ≥ ∆tmax{|vL|, |vR|}. For the numerical solution of collision steps, we compute a
numerical approximation of the moments of ψs needed in φe

s
(Ψ) using composite Simpson

rule over [vL, vR]. The velocity step ∆v is chosen to assure the double precision accuracy
to the numerical approximation of the moments related to the initial data. Then, time-
advancing is carried out using explicit RK methods of order k-1, k=2, 3, which maintain
the overall accuracy of CSM and SSM, respectively.
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