
Communications to SIMAI Congress, DOI: 10.1685/CSC06069
ISSN 1827-9015, Vol. 2 (2007)

EVOLUTIONARY ALGORITHMS FOR

DOPING PROFILE OPTIMIZATION IN

SEMICONDUCTOR DESIGN

V. Di Stefano

Department of Mathematics,

University of Messina, Italy

E-mail: distefan@dipmat.unime.it

C.R. Drago and C.L.R. Milazzo∗

Department of Mathematics and Computer Science,

University of Catania, Italy

E-mail: drago@dmi.unict.it
∗E-mail: cmilazzo@dmi.unict.it

Abstract.

This article, which is a preliminary work, deals with the optimal design of a semiconductor

device. The objective is to slightly change the doping profile in order to get a gain in the outflow

current. Three different black box algorithms are compared with respect to the computational

cost and the quality of the solution. The CRS algorithm seems to be the most competitive

allowing to reach the optimum with a low computational cost.
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1. Introduction

Contemporary manufacturing is undergoing a rapid evolution. Owing to the sweeping
changes in science and technology, research in mathematical and computational sciences
plays an important role in creating and improving technologies and management practices
of the manufacturing system.

The design of microelectronic devices becomes ever more demanding due to various
factors such as substantial increases in frequency and bandwidth and growing require-
ments regarding functionality and reliability, low power consumption and small size. As
a consequence, the design of a microelectronic devices requires advanced models, and the
optimization of their performances through robust optimization algorithms.

Along with the increase in complexity of the models, often is not possible to build an
analytical representation of the function, and sometimes the derivatives of the function
cannot be easily calculated; for this reason it is necessary the use of methods which do
not make use of the function gradient. A class of this methods are the so called “black box
methods”, in which the optimization is performed by generating a minimizing sequence
independently of the way the calculations are organized.

In this work we intend to optimize the doping profile of a semiconductor device in or-
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der to obtain a gain in the outflow electric current. Due to the difficulty of calculating
the derivatives of the function, we decided to test and compare different black box al-
gorithms such us Real coded Genetic Algorithm (RGA), Control Random Search (CRS)
and DIviding RECTangles (DIRECT).

For the device simulations we use the Drift Diffusion model, which is today the mostly
widely used since it allows an accurate description of the underlying physics in combi-
nation with low computational costs. There exists a large amount of literature on this
model, which covers questions of the mathematical analysis as well as of the numerical
discretization and simulation.7,11

The paper is organized as follows. In section 2 is shown the Drift Diffusion Model for
semiconductor devices. Section 3 contains the formulation of the optimization problem.
In sections 4, 5, 6 are given an overview of the RGA, CRS and DIRECT algorithms
respectively. In section 6 are shown the numerical results.

2. The Drift Diffusion Model

The stationary standard Drift Diffusion model for semiconductor devices enclosed in a
bounded domain Ω ⊂ R

d, d = 1, 2, 3, is given by the following balance equations for the
electron density n and hole density p, coupled to the Poisson equation for the electrostatic
potential V :

Jn = q(Dn∇n − µnn∇V )

Jp = −q(Dp∇p + µpp∇V )

divJn = qR(n, p)(1)

divJp = −qR(n, p)

ǫ△V = q(n − p − C)

where C denotes the doping concentration, Jn and Jp the current densities of electrons
and holes, respectively. The parameters Dn, Dp, µn, µp denote the diffusion coefficients
and the mobilities of electrons and holes respectively. The physical constants are the
elementary charge q and the materials permittivity constant ǫ. The total current density
is given by J = Jn + Jp.
In the model, generation-recombination processes are included via the recombination rate
R : R

2 → R. Commonly employed is the Shockley-Read-Hall term

RSRH =
np − n2

i

τp(n + ni) + τn(p + ni)
,

where the physical constants are the carrier life times τn and τp and the intrinsic density
ni.
In the following we will only consider regimes in which we can assume the validity of the
Einstein relations:

Dn = UT µn, Dp = UT µp.

where UT = KBTL/q is the thermal voltage at the temperature T . KB denotes the Boltz-
mann constant.
In high field applications the mobilities depend on the electric field E = −∇V , by the
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following Caughey-Thomas formula relations:

µn,p = µ0
n,p



1 +

(

µ0
n,p|E|
vs

)2




−1/2

,

where µ0
n, µ0

p stand for the mobilities of the field-independent scattering models and vs is
the saturation velocity.
To get well posed problem, system (1) has to be supplemented with appropriate bound-
ary conditions.
We assume that the boundary ∂Ω splits into two disjoint parts ΓN and ΓD, where ΓD

models the Ohmic contacts of the device and ΓN the insulating parts. Let ν denotes the
outward normal vector along the boundary. Firstly, assuming charge neutrality and ther-
mal equilibrium at the Ohmic contacts ΓD, and, secondly, zero current flow and vanishing
electric field at the insulating part ΓN , yields to the following boundary conditions:

n = nD, p = pD, V = VD on ΓD,

∇n · ν = ∇p · ν = ∇V · ν = 0 on ΓN ,

where n = nD, p = pD, V = VD are the H1(Ω)-extension of

nD =
C +

√

C2 + 4n2
i

2
, pD =

−C +
√

C2 + 4n2
i

2
,

VD = −UT log

(

nD

ni

)

+ U, on ΓD.

Here, U denotes the applied voltage.
For the sake of a smoother presentation we assume in the following that the device
considered is operated near thermal equilibrium. Thus we assume that no generation–
recombination effects are present, i.e. R ≡ 0, and the mobilities µn, µp are constant. In
order to get dimensionless equations, we perform the following scaling:

n → Cmñ, p → Cmp̃, x → Lx̃,

C → CmC̃, V → UT Ṽ , Jn,p → qUT Cmµ0

L J̃n,p,

where L denotes a characteristic device length, Cm the maximal absolute value of the
background doping profile and µ0 a characteristic value for the mobilities.
Introducing the Debye length

λ2 =
ǫ UT

qCmL2
,

the scaled equations reads:

△n − div(n∇V ) = 0

△p + div(p∇V ) = 0

λ2△V = n − p − C.

The Dirichlet boundary conditions transform to

nD =
C +

√
C2 + 4δ4

2
, pD =

−C +
√

C2 + 4δ4

2
,

VD = −log
(nD

δ2

)

+ U, on ΓD,

where δ2 = ni/Cm denotes the scaled intrinsic density.
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3. Problem Formulation

Let Γ0 be a portion of the Ohmic contacts ΓD at which we can measure the total current
density J. At this contact we prescribe a gained current Ig and allow deviations from a
reference doping profile C to gain this current flow. Especially we intend to minimize the
cost functional of the form

(1) Q =

(

∫

Γ0

Jds − Ig

)2

+ ε

∫

Ω
(C − C)2dx,

where ε > 0 is a parameter which balances the two contributions of the functional, the
one given by the current and the one given by the doping profile. The reference doping
profile C can be approximated by a Gaussian distribution:

C =
α√
2πσ

exp

(

− x2

2σ2

)

,

where σ is the standard deviation and α is the width of the curve.

4. The Real coded Genetic Algorithm

Genetic Algorithms (GAs) are search procedures based on the mechanism of natural
genetics and natural selection. They combine the concept of artificial survival of fittest
with genetic operators abstracted from nature to form a robust search mechanism.

The application of GAs to Optimization problems is becoming of challenging interest,
due to the possibility of obtaining global optimal solutions and of being applicable also
to non differentiable (noisy) functions.
Real coded Genetic Algorithm (RGA) differs from most optimization techniques because
of its global searching effectuated by one population of solutions rather than from one
single solution.

The RGA search starts with the creation of a random initial population of chromo-
somes, i.e., potential solutions to the problem. Then, these individuals are evaluated in
terms of their “fitness” values, i.e., their corresponding objective function values. In this
work the fitness function used is the functional (1). The fitness of each chromosome is
calculated and the minimum fitness Fmin and the average fitness Favg will be found.
The offsprings are the new chromosomes obtained from crossover and mutation. Crossover
is a structured recombination operation obtained by exchanging genes of two parents. Mu-
tation is the occasional random alteration of genes.
The crossover process randomly selects two parents to exchange genes with a crossover
rate Pc. The location of the gene within the chromosome is called “locus”. The crossover
point is also randomly chosen from the loci. If one (or both) offspring is infeasible, an-
other mate will be chosen again for crossover. In particular in RGA are used a Single

Point Crossover or Simulated Binary Crossover.
The mutation process randomly selects one parent with a mutation rate Pm. If the off-
spring is infeasible, another parent will be chosen until a feasible solution can be obtained.
For mutation in RGA, are used the Binary Mutation or the Polynomial Mutation to re-
store lost or unexpected genetic material into a population to prevent the premature
convergence of the algorithm to a sub-optimal solutions and to guaranty diversity among
solutions. In fact, lack of such diversity would lead to a reduction of the search space
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spanned by the RGA, and consequently to a degradation of its optimization performance.
Now, the 2p chromosomes (p parents and p offspring) are then ranked in ascending order
according to their fitness values. “b” individuals with the best fitness are kept as the
parents for the next generation. Other individuals in the combined population of size
(2p−b) have to compete by adopting the “tournament selection” approach to get selected
in the next generation.
The process of generating new trials with the best fitness will be continued until the
fitness values are optimized or the maximum generation number is reached.

5. The Controlled Random Search Algorithm

Controlled Random Search (CRS) is a global optimization algorithm similar to a genetic
one, which has an advantage of a relatively lower possibility of converging to a local
minimum point than the optimization algorithms based upon general gradient.
The process of finding a minimal point using CRS is as follows.
Given a function of n variables, an initial search domain V is defined by specifying limits
to each variable. Controlled random search randomly generates a preset number of search
points N called the candidate solutions within the search region of V, and consequently
begins the search.
The objective function of each search point is obtained, and the location information of
each search point and the objective function value are stored in an array A. A new search
point P is then selected based upon the set of candidate solutions in each of the next
iterations. The objective function value of point P is calculated when the search point P
exists within the search range V. The objective function value calculated at point P fP

is compared with the objective function value at point M fM as the maximum objective
function value of the N number of points stored in array A. If fP < fM , then point M
is eliminated from the set of candidate solutions and point P is included into the set.
However, if fP > fM , point P is discarded and a new search point is selected based upon
the set of candidate solutions. In this way the current candidate solutions tend to cluster
around the minima lower than the current value of fM as the algorithm proceeds.
The probability of the candidate solutions ultimately converging to the global minimum
depends on the value of N , on the complexity of the objective function, and on how the
initial candidate solutions are chosen.
The method of determining the new candidate solution to be included in the set in each
iteration affects the performance of CRS.
Price8 suggests the following method when there are n input variables. At each iteration,
n+1 distinct points R1, ..., Rn+1 are randomly chosen from the current candidate solutions,
and these constitute a simplex in n-space. The point Rn+1 is arbitrarily taken as the pole
(designated vertex) of the simplex, and the next candidate solution point is calculated
with the following equation.

P = 2G−Rn+1.

Where, P, G and R represent the position vectors of the corresponding points.
Price9 modified the algorithm to speed up convergence without significantly reducing the
global search capability. In the modified algorithm, R1 is always the point L, which has
the least function value, and n points are randomly chosen from N − 1 points. Hence, L
can never be the pole of the simplex.
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6. The DIviding RECTangles Algorithm

The DIviding RECTangles (DIRECT) optimization algorithm was created in order
to solve difficult global optimization problems with bound constraints and real-valued
objective function.
DIRECT is a sample algorithm. That is, it requires no knowledge of the objective function
gradient. Instead, the algorithm samples points in the domain, and uses the information it
has obtained to decide where to search next. A global search algorithm like DIRECT can
be very useful when the objective function is a “black box” function or a simulation. The
DIRECT algorithm will globally converge to the minimal value of the objective function.
DIRECT was designed to overcome some of the problems that Lipschitzian Optimization
encounters. DIRECT begins the optimization by transforming the domain of the problem
into the unit hyper-cube. That is,

Ω = {x ∈ RN : 0 ≤ xi ≤ 1}.

The algorithm works in this normalized space, referring to the original space only when
making function calls. The center of this space is c1, and we begin by finding f(c1). The
next step is to divide this hyper-cube. We do this by evaluating the function at the points
c1±δei, where δ is one-third the side-length of the hyper-cube, and ei is the ith unit vector.
The DIRECT algorithm chooses to leave the best function values in the largest space;
therefore we define:

wi = min(f (c1 + δei ), f (c1 + δei )), 1 ≤ i ≤ N ,

and divide the dimension with the smallest wi into thirds, so that c1 ± δei are the centers
of the new hyper-rectangles. This pattern is repeated for all dimensions on the “center
hyper-rectangle”, choosing the next dimension by determining the next smallest wi. The
algorithm now begins its loop of identifying potentially optimal hyper-rectangles, dividing
these rectangles appropriately, and sampling at their centers. Once an hyper-rectangle
has been identified as potentially optimal, DIRECT divides this hyper-rectangle into
smaller hyper-rectangles. This restriction ensures that the rectangles will shrink on every
dimension. If the hyper-rectangle is an hyper-cube, then the division will be done along
all sides, as was the case with the initial step.

7. Numerical Results

The purpose of this paper is to modify the doping reference profile for which an am-
plification of the total current by 50% is gained, i.e. we set Ig = J ∗ 1.50, where J is a
reference current value.
For the simulations it has been chosen a P − N silicon diode, 1 µm long and the applied
bias voltage was V = 0.259 Volt.
The reference current value is

J = 7.0337 · 10−4

obtained in correspondence of σ = 0.6 and α = 5.0.
The state system was discretized by a variant of the well known exponentially fitted
Scharfetter-Gummel scheme.11 The computations were performed on a uniform grid of
101 points.
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We tested the optimization algorithms using for the parameters σ and α the following
ranges:

σ ∈ [0.1, 0.7] α ∈ [1.0, 7.0].

To test the algorithms, it has been necessary to carry out many simulations by varying
the characteristic parameters of each algorithm.
In order to obtain the best results of the optimization it was necessary for RGA to choose
the number of the initial population d, the number of generations gen, which corresponds
to the number of iterations of the algorithm, the crossover and the mutation probability
pc and pm; for CRS it was necessary to fix the number of search points N ; for DIRECT we
had to choose the maximum number of the iterations maxiter, the maximum number of
the evaluations of the objective function maxeval, the maximum number of the rectangles
divisions maxdeep.
The following table shows the best results of the optimizations

Algorithm Opt σ Opt α Opt J Funct Feval
RGA 0.7 5.14487 10.4389 · 10−4 4.8444 · 10−5 10100

CRS 0.7889 6.98781 10.4463 · 10−4 4.3104 · 10−5 314

DIRECT 0.6982 5.10836 10.4510 · 10−4 4.8593 · 10−5 367

where Opt σ and Opt α are the best value of the parameters, Opt J is the corresponding
value of the optimized current, Funct stands for the value of the objective function, and
Feval is the total number of the evaluations of the objective function.
These results are obtained using the following characteristic parameters of each algorithm:

• RGA: d = 100, gen = 100, pc = 0.9, pm = 0.4;
• CRS: N = 50;
• DIRECT: maxiter=100, maxeval=350, maxdeep=400.

The following pictures show the points distribution and the evolution of the objective
function.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

al
ph

a

sigma

solutions

 4.8e-05

 5e-05

 5.2e-05

 5.4e-05

 5.6e-05

 5.8e-05

 6e-05

 6.2e-05

 0  20  40  60  80  100

f

gen

functional

Fig. 1. Points distribution and evolution of the objective function referred to the number of the ger-
eration, obtained using the RGA algorithm.

Conclusions

As can be seen in the previous table all the algorithms are able to obtain a global
optimal solution, in correspondence of which the value of the objective function is very
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Fig. 2. Points distribution and evolution of the objective function referred to the number of the research
point, obtained using the CRS algorithm.
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Fig. 3. Points distribution and evolution of the objective function referred to the number of the iteration,
obtained using the DIRECT algorithm.

small. So the main difference in the performance of the algorithms is the number of the
objective function evaluations which determines the computational time. In particular,
RGA needs 10100 evaluations of the objective function, CRS reaches its optimal solution
after 314 evaluations while DIRECT does it after 367 evaluations.
So we can conclude that for this problem Controlled Random Search algorithm seems to
be the most competitive search algorithm in terms of quality solution and computational
cost.
Future work will focus on the study of more sophisticated devices and on the formulation
of the optimization problem by using a combination of Gaussian distributions for the
doping profile and in such a way a larger number of control variables.
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