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We give an introduction to the kinds of problems we will be interested in through-
out this work. A familiar special case in the theory of systems of linear equations is
the row reduction of matrices of the systems.
Let k be any field (e.g. the rational number Q, the real number R, the complex num-
ber C). We consider polynomials f(X1, . . . , Xn) in n variables with coefficients in k.
Such polynomials are finite sums of terms of the type aXα1

1 · · ·Xαn
n , where a ∈ k and

βi ∈ N, i = 1, . . . , n. We call Xα1
1 · · ·Xβn

n a power product. Let k[X1, . . . , Xn] be the
set of all polynomials in n variables with coefficients in the field k. k[X1, . . . , Xn] is a
commutative ring with respect to the usual operations of addition and multiplication
of polynomials. Moreover k[X1, . . . , Xn] is a k-vector space with basis the set

∏
of

all power products
∏

= {Xα1
1 · · ·Xαn

n , αi ∈ N, i = 1, . . . , n}.
Consider the system f1 = 0, . . . , fm = 0 (1), where each fi is a linear polynomial.
In this case the algorithmic method to resolve (1) is the well-known row reduction
which changes the system (1) to row echelon form.

Example 0.1. Let f1 = X1−2X2+X3 and f2 = 2X1−X2+2X3 be linear polynomials
in k[X1, X2, X3]. We consider the ideal I = (f1, f2) and the algebraic variety V (I) ∈
k3, that is, the set of solutions of the system{

X1 − 2X2 + X3 = 0

2X1 −X2 + 3X3 = 0 (∗)

We apply row reduction on the matrix associated with the system(
1 −2 1
2 −1 3

)
−→

(
1 −2 1
0 3 1

)

Communications to SIMAI Congress,
ISSN 1827-9015, Vol. 1 (2006)

DOI: 10.1685/CSC06038

Licensed under the Creative Commons Attribution Noncommercial No Derivatives



The last matrix is in row echelon form. The solutions of the system (*) are the
same as those of the system {

X1 − 2X2 + X3 = 0

3X2 + X3 = 0
.

but, in this case, they can be easily obtained parametrically as:

X1 = −5

3
X3, X2 = −1

3
X3.

The row reduction process is, in fact, a method to change a generating set for the
ideal I = (f1, f2) into another generating set.
The general ingredients that we extract from the examples can be used for the general
situation of non-linear polynomials.
The notion of circuit plays a crucial rule in the above process. This notion comes
from matroid theory, but it is very important in the research of an universal Gröbner
basis for the ideal I, the vanishing ideal of k[X1, . . . , Xn] of a (n − m)- dimensional
vector subspace of kn.
We give some definitions:
Let V be an (n−m)- dimensional vector subspace of kn and let I be its vanishing ideal
in the ring k[X1, . . . , Xn], generated by m linear forms f1, . . . , fm, fi =

∑n
j=1 aijXj,

i = 1, . . . ,m.

Definition 0.2. Let f ∈ I be a non-zero linear form.f =
∑n

i=1 aiXi is a circuit if
supp(f) = {i : ai 6= 0} is minimal with respect to inclusion.

There are at most
(

n
m−1

)
circuits, since if I is generated by linear forms, the

Buchberger algorithm is equivalent to Gaussian elimination on the coefficients matrix.

Proposition 0.3. Let I be the vanishing ideal in k[X1, . . . , Xn] of a (n−m)- dimen-
sional vector space. Then every reduced Groöbner basis consists of m circuits.

Theorem 0.4. [1], chap.2
Let I be an ideal of k[X1, . . . , Xn] generated by linear forms. The set of circuits in I
is a minimal universal Gröbner basis for I.

1 Linear forms with coefficients in a ring

Now consider any commutative, noetherian, ring R with unit element.
Consider the ring S = R[Y1, . . . , Yn], where Y1, . . . , Yn are indeterminates on R and
m elements f1, . . . , fm ∈ S that are linear in the Y ′

i s variables.
fi =

∑n
j=1 aijYj, i = 1, . . . ,m, aij ∈ R.

Let J = (f1, . . . , fm) be the vanishing ideal of these forms in S. The ideal J is known
and it appears as the presentation ideal of the symmetric algebra SymR(M) of a

module M that is the cokernel of the map 0 → Rm f→ Rn, where f is represented by
the matrix (aij). (In fact, we can obtain the ideal J , as a presentation ideal of the



symmetric algebra of a vector space.)
However the linear forms have coefficients in the ring R, not in the field k(linear
algebra).
The aim of our research is to give:

1. A definition of circuit in this context.

2. If R = k[X1, . . . , Xs], to prove that if J is an ideal generated by linear forms
of R[Y1, . . . , Yn] that are circuits, then this set is a minimal universal Gröbner
basis of J .

Consider the presentation of SymR(M)

SymR(M) = R[Y1, . . . , Yn]/J.

Let < be a monomial order on the monomials of R[Y1, . . . , Yn] in the variables Yi

such that
Y1 < Y2 < · · · < Yn.

We call < an admissible order.
With respect to this term order, if f =

∑
aαY α, Y α = Y α1

1 · · ·Y αn
n , α ∈ Nn, we put

in<f = aαY α, where Y α is the largest monomial in f such that aα 6= 0.
If we assign degree 1 to each variable Yi and degree 0 to the elements of R, we have
the following facts:

1) J is a graded ideal

2) The natural epimorphism S → SymR(M) is a graded homomorphism of graded
algebras on R, S is a graded ring and SymR(M) is a graded algebra.

Definition 1.1. The ideal (f1, . . . , fn) is generated by circuits if

in<J = (I1Y1, I2Y2, . . . , InYn),

where I1, . . . In are ideals generated by elements of R.

If R = k[X1, . . . , Xs] we can use the Gröbner bases theory and Buchberger’s
algorithm to compute in<J .
SymR(M) = k[X1, . . . , Xs, Y1, . . . , Yn]/J . We can introduce a term order on S =
k[X1, . . . , Xs, Y1, . . . , Yn], such that Y1 < Y2 < · · · < Yn and Xi < Yi for any i.
For example X1 < X2 < · · · < Xs < Y1 < Y2 < · · · < Yn is such a term order.
If G is a Gröbner basis for J ⊂ k[X1, . . . , Xs, Y1, . . . , Yn], we have in<J = (in<G) =
(in<f, f ∈ J) and if the elements of G are linear in the Yis, it follows that f1, . . . , fn

is generated by circuits.

Example 1.2. For s = n, let J be the ideal of S generated by the 2-minors of the
matrix (

X1 X2 · · · Xn

Y1 Y2 · · · Yn

)
Then in<J = (I1Y1, . . . , InYn) = ((X1)Y2, (X1, X2)Y3, . . . , (X1, X2, . . . Xn−1)Yn)

and J is generated by circuits. The set G = {X1Y2−X2Y1, X1Y3−X3Y1, . . . , Xn−1Yn−
XnYn−1} is a minimal universal Groebner basis for J .



Remark 1.3. If R = k[X1, . . . , Xs], from the theory of Gröbner basis, if f1, . . . , fn

is generated by circuits with respect to any admissible term order <, then f1, . . . , fn

is generated by circuits for another admissible term order, too.

Project:To give criteria to study systems of equations of S, linear in the variables
Yi.
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