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1 Introduction

Statistical methods are applied to answer questions in many of the major business
disciplines including accounting, finance, marketing, economy, production and, of course,
general management.The relationships between sample data and population values are
based on the definitions:
Definition 1.1. (Population): the total group of objects being studied or investigated.
Definition 1.2. (Sample): a group of objects that is selected from population and

from which information is gathered.
Definition 1.3. (Statistical inference): The methods involved in drawing conclusions

about population based upon information collected from a sample.
Algebraic methods can be used where algebraic functions are utilized in our process.

On the other and, algebraic functions are very important:

1) X: the sample mean;

2) σ2: the sample variance.

X =
1

n
(X1 + X2 + · · · + Xn), where n is the sample size and X1, X2, . . . , Xn are the

random variables of the random process. Hence X is a linear function of n variables
X1, X2, . . . , Xn, i.e. a linear polynomial of R[X1, X2, . . . , Xn] , R the field of real numbers.

Moreover σ2 =
1

n
[(X1 − µ)2 + · · · + (Xn − µ)2], where µ is the population mean (value

being estimate) is a polynomial of R[X1, X2, . . . , Xn] of degree two. We call X and σ2

statistics.
In general we can have other statistics in our process, but these are the most studied and
important. Methods of computational algebra can help us to study interesting questions.
Definition 1.4. Let X1, X2, . . . , Xn be random variables and X = (X1, X2, . . . , Xn)

be the correspondent sample. Let (a1, . . . , an) and (b1, . . . , bn) be two sample data. Let
(a1, . . . , an) < (b1, . . . , bn) if (a1, . . . , an) < (b1, . . . , bn) for a total order in Rn (lexico-
graphic order, degreelexicographic order, . . . ).

As a consequence we can order all sample data of the sample X. From now on , the
space of sample data will be totally ordered.
Definition 1.5. Let s(X1, X2, . . . , Xn) ∈ R[X1, X2, . . . , Xn] a statistic. An order

on the random variables X1, X2, . . . , Xn is called compatible with the statistic function
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s(X1, X2, . . . , Xn) if (a1, . . . , an) < (b1, . . . , , bn) implies s(a1, . . . , an) ≤ s(b1, . . . , , bn) for
every sample data.
Example 1.1. The sample mean X is compatible with respect to the degree lexico-

graphic order and not with respect to the lexicographic order: (1, 4, 5) < (2, 2, 3) for lex,
but 1 + 4 + 5 > 2 + 2 + 3.
Example 1.2. The sample variance σ2 is not compatible with respect to the degree

lexicographic order, neither with respect to the lexicographic order: (1, 2, 3) < (2, 4, 5)
for degree lex order and for lex order, but in both cases, if the population mean µ = 3,
(1 − 3)2 + (2 − 3)2 + (3 − 3)2 > (2 − 3)2 + (4 − 3)2 + (5 − 3)2.
If µ = 0, σ2 is compatible w.r.t. the degree lex order.

2 Applications

1. Hypothesis tests on means.

2. Stochastic matrices.

1. One of the most common types of hypothesis tests deals with the testing of means.
Example 2.1. State the null hypothesis (H0), which is the statement that we test.

(H0) : µ = a, µ > a, µ < a, that is the population mean is equal to some specified value
or least some specified value of a, or at most some specified value of a. Since the sample
mean is compatible with the order degreelex, this implies the rejection region of (H0) or
the fail to reject region of (H0) can be easily computed accordingly our order <.
Theorem 2.1. Let T be any hypothesis test involving means and suppose that the null

hypothesis (H0) is the statement that we test. Consider the case (H0) : µ = a, i.e. the
population mean is equal to some specified value. Suppose that the fail to reject region A
of T is given in terms of inequality on the statistic sample mean X,

A(α) = {(a1, . . . , an) ∈ R
n/X < c}

where α is the level of T and c ∈ R. Suppose that we have a sample data (b1, . . . , bn) such
that b1+· · ·+bn < cn. Then all (a1, . . . , an) ∈ Rn and such that (a1, . . . , an) < (b1, . . . , bn)
for degree lex order belong to A(α). The assertion depends from the compatibility of
the statistic sample mean X with the degree lex order, hence (a1, . . . , an) < (b1, . . . , bn)
implies a1 + · · ·+ an ≤ b1 + · · · + bn < cn.

2. The theory of circuits is a very interesting argument of linear algebra. Our interest
is its application to study stochastic processes in statistic.
Consider a stochastic matrix









a12 a13 ... a1n

a21 a23 ... a2n

... ... .... ...
an1 an2 ... ann









such that
∑

j
aij = 1.

Example 2.2. Let p and q be two rational numbers such that p+ q = 1. Consider the



DOI: 10.1685/CSC06097 3

5 × 6 - matrix












p q 0 0 0 0 0
0 p q 0 0 0 0
0 0 p q 0 0 0
0 0 0 p q 0 0
0 0 0 0 p q 0













Such a matrix describes a stochastic process that is called ”random promenade along
the integers” ([1]) and it represents the transition matrix Mj at the step j = 2. It is
in echelon form and we have five circuits in the sense of [3]: f1 = pX1 + qX2; f2 =
pX2 + qX3; f3 = pX3 + qX4; f4 = pX4 + qX5; f5 = pX5 + qX6.

Mj is a submatrix of the matrix

















0 q 0 0 0 0
p 0 q 0 0 0
0 p 0 q 0 0
0 0 p 0 q 0
0 0 0 p 0 q
0 0 0 0 p 0

















called the transition matrix of the ”random promenade along the integers”.
Definition 2.1. A state defined by a circuit will be called a circuital state.
Definition 2.2. A stochastic matrix in the echelon form will be called strong stochas-

tic.

If we reduce for rows a stochastic matrix , we have a matrix that in general is not
stochastic.

We can consider matrices of indeterminates. By Hilbert Nullstellensatz theorem in
computational form ([2],chap2), we can solve the problem to find stochastic states that
are circuital, by using a Computer algebra system(CoCoA).
Example 2.3. Consider the matrix of indeterminates

A =





X11 X12 0 0 0
0 X22 X23 0 0
0 0 X33 X34 0





Let B = C[X11, X12, X22, X23, X33, X34, Y1, Y2, Y3, Y4]. We can utilize the theory of
Gröbner bases to determine the solutions of the system







































X11 + X12 = 1

X22 + X23 = 1

X33 + X34 = 1

X11Y1 + X12Y2 = 0

X22Y2 + X23Y3 = 0

X33Y3 + X34Y4 = 0
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The resolution of the system is equivalent to find the first sygyzy
C[X11, X12, X22, X23, X33, X34]−module of the module that has A as a representation
matrix. Moreover the solutions must satisfy X11+X12 = 1, X22+X23 = 1, X33+X34 = 1.
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