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Ground deformation and potential fields anomalies are important sets of observations for 
investigating the physic of the processes occurring at depth within the Mt. Etna volcanic edifice. 
During ascent, magma interacts with surroundings rocks and fluids, and almost inevitably crustal 
deformation and gravity changes are produced. If the volcanic edifice can be assumed to be elastic, 
contributions to gravity variations depend on surface and subsurface mass redistribution driven by 
dilation/contraction of the volcanic source. Attempts at modeling gravity anomalies expected to 
accompany crustal deformations often involve a great deal of effort due to the complexity of the 
problem. A series of analytical solutions for modeling coupled deformation-gravity variations due 
to volcanic sources have been devised and widely used in literature (Sasai, 1991; Okubo, 1992). 
Indeed, these analytical solutions are based on a homogeneous elastic half-space model, although 
geological data and seismic tomography indicate that the Mt. Etna is elastically inhomogeneous, 
and that rigidity layering and heterogeneities are likely to affect the magnitude and pattern of 
observed signals. 
We use the finite-element method (FEM) to overcome these intrinsic limitations and provide more 
realistic models, which allows considering topographic effects as well as complicated distribution 
of medium properties. To this regard the gravity anomaly ∆g produced by a pressurized source can 
be calculated by solving the following boundary value problem for the gravitational potential φg: 
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where G is the gravitational constant and ∆ρ(x, y, z) is the density distribution given by: 
 

 1 0 0( , , ) u ux y z divρ δρ ρ ρ∆ = − − ⋅∇  (2) 
The first term δρ1, on the right side of Eq. (2), is the density change related to the introduction of 
the new mass, the second term ρ0 is the material density before deformation and is related to the 
contribution due to the volume change arising from compressibility of the material, the third term u 
is the displacement field and is originated from the displacement of density boundaries in 
heterogeneous media. The Eqs. (1) and (2) show how the deformations of the elastic medium are 
related to changes in the gravity fields. This formulation explains that gravity anomalies cannot be 
interpreted only in term of additional mass input disregarding the deformations of the surrounding 
rocks (Bonafede & Mazzanti, 1998). 
Since displacement of layer boundaries can be computed independently from the assumption that 
new mass is added to the source or not, we consider source inflation/deflection without input of new 
magma, so the first term of Eq. (2) is equal to zero. Instead we focus our attention on the other two 
terms, the gravity anomaly produced by density changes within a semi-infinite medium (G4; 
Hagiwara, 1977) and the change (G2; Hagiwara, 1977) caused by the excess mass corresponding to 
uplift portion of the free surface (Bouguer anomaly) and the displacement of subsurface layers. 
We reproduce our finite element model in two steps. Firstly, we solve the deformation field in terms 
of elastostatic equilibrium equations, calculating the displacement field and the stress field in over 
the computational domain. Then, we solve the boundary problem Eq. (1) for the coupled gravity 



 

 

potential. Computations are carried out by using the commercial software COMSOL Multiphysics, 
version  3.2.  
FEM solutions strongly depend on numerical parameters. In general optimal size of the domain, 
meshing, and additional conditions to be imposed over the boundary are not known a priori, so it is 
necessary to calibrate the model. Preliminarily, some benchmark tests were carried out on the well-
known solution of Mogi model to compare the analytical results with numerical ones assuming a 
homogeneous half-space medium. Once the accuracy of FEM solutions has been verified, we 
incorporate some realistic features in order to evaluate their effects.  
We consider a 3D axial symmetric model, assuming an axial-symmetric shape of Etna volcano. For 
the sake of simplicity, we choose to model the gravitational effects caused by spherical pressurized 
Mogi sources: a dilation point buried at depth d, so the approximation with a sphere is valid until 
the radius r is little compared to the depth.  
We consider three Mogi sources buried at 3 km, 6.5 km and 9 km, each one endowed with an 
internal overpressure equal to 100 MPa and a radius of 1 km. These parameters were chosen as 
commonly accredited for Etna volcano and could be interpreted as shallow magma reservoirs or 
deeper magma chambers. 
For the deformation field calculation, computational domain is a 100x100 km2 area. As boundary 
conditions we fix the displacement at the axis of symmetry in r-direction, while z-direction 
displacement is set to zero for the bottom, the extreme boundary at the distance of 100 km is fixed 
and the surface is stress free. As for the gravity calculation we solve the problem extending the 
computational domain up to an elevation of 100 km, in a way to assume the gravity potential equal 
to zero for the outermost boundaries, while Neumann conditions are imposed for the axis of 
symmetry.  
At first we study the effects caused by the structural multi-layering of the medium. We retrieve 
density and elastic information about the crustal structure from the recent seismic tomography 
studies on Etna volcano (Chiarabba, 2000). Since the longitudinal wave velocities are directly 
linked to density (Birch, 1964) and other material parameters, such as elasticity, it is reasonable use 
seismic tomography information to refine our model.  
As for the density values, also this information can be retrieved from tomography. Indeed in 
literature there exist several empirical relationships for seismic wave velocity and density 
depending on the subsurface geometry of geologic units and on chemical composition of the Earth’s 
crust (Brocher, 2005). We retrieve a density model of the crust by using density-velocity relations 
(Crhistensen and Mooney, 1995; Gardner, 1974), interpolating these laws with a third order 
polynomial function that yields the following relationship: 
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where ρ is the density and Vp is p-wave seismic velocity. Starting from p-wave velocities, we can 
obtain the medium elastic parameters. Particularly, we calculate the Young’s modulus, E, through 
the relationship:  
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assuming a Poisson ratio ν=0.25. 
From these considerations, we introduce in the discussed model a multi-layered crustal structure 
described in Table 1. Since the deformation pattern is insensitive to the particular shape of 
interfaces between layers (Trasatti et al., 2003), we consider six horizontal layers characterized by 
different shear modulus and density. 
Numerical solutions from finite element method were compared to analytical ones. For analytical 
half space solutions we consider an elastic medium with shear modulus equal to 25 GPa and density 
equal to 2500 kg/m3. Fig. 1 shows the G4 and G2 gravity anomalies for the three sources for the 
multilayered model. For all the sources, the presence of density and elastic heterogeneities causes a 
modification of the gravity pattern. In the case of shallower reservoir (Figs. 1a and 1d), we notice an 



 

 

increase in the amplitude of the signal about some tens of µGal. This effect decreases with the 
depth: for the source B, this amount assumes the order of some µGal (Figs. 1b and 1e) and for the 
deepest source (Fig. 1c and 1f) it becomes less than 1 µGal. 
In order to appreciate a more realistic description, we choose to include in the numerical model a 
simple topographic profile assuming an axial-symmetric shape of Etna volcano. Since Mt. Etna, the 
largest stratovolcano in Europe, rises up to 3320 m above the sea level and its average radius is 20 
km, we model the volcano edifice as a cone, introducing a simplified profile with an average slope 
of 15% where the sources are coaxial with the cone. We add this information to the heterogeneities 
and compare the gravity field anomalies with the analytical ones (Fig. 2). The presence of 
topography affects both the G2 and G4 gravity anomalies. The G2 term is attenuated for all the 
three sources (Figs. 2a, 2b, 2c), whereas the G4 term is dependent on the source depth (Figs. 2d, 2e, 
2f). It is worth to note that the minimum amplitude in the G4 gravity anomaly is shifted some 
kilometers away from the summit. The distance of the local minimum from the summit increases 
for deeper sources. However the same effect is not detectable for G2 contribution in which only a 
change in its bell shape is detected. Topographic effects tend to decrease with increasing the 
horizontal distance from the summit. 
Our findings highlight that topography and medium heterogeneity engender perturbations in the 
geophysical fields produced by a pressurized source. However, such perturbations are more 
enhanced in the presence of steepest topography, i.e. in the summit area, and in presence of severe 
heterogeneity. Whereas, further away from the summit the discrepancies between the analytical 
model and the numerical ones are less evident. Hence, neglecting the complexities associated with 
morphology and rheology of Mt. Etna could provide an inaccurate estimate of source parameters 
from geophysical observations. The inclusion of topography and structural heterogeneities might 
highlight significant insights for volcanic source definition. 
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Depth range [m] Vp [m/s] Density [kg/m3] Young Modulus [GPa] 
3300 ÷ -1000 2.5 2200 11.5 



 

 

-1000 ÷ -5000 3.8 2400 28.8 
-5000 ÷ -8000 5.4 2600 63 
-8000 ÷ -15000 6.2 2700 86 
-15000 ÷ -23000 6.6 2800 101 
-23000 ÷ -50000 7.3 3000 133 

 
Table 1 - Multilayered crustal model 
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Figure 1 - Gravity contributions for the multilayered model.  
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                         (d)           (e)        (f) 
 
Figure 2 - Gravity contributions in the heterogeneous medium (Table 1) with topography. 
 
 


