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On Multilane Traffic Flow
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We consider continuum models for multilane traffic flow consisting essentially on a
system of balance laws coupled only through suitable source terms. In other words, the
convective part of each equation forming the system describes the intra–lane dynamics;
on the contrary, each right hand side models the interplay between adjacent lanes.

As a first example consider the following model for n lanes proposed in [9]:
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Here, the subscripts 1, j = 2, . . . , n − 1 and n refer to the lane numbers. The quantities
ρℓ, respectively vℓ = vℓ(ρℓ), are the vehicle density, respectively the average traffic speed,
in the ℓ-th lane, for ℓ = 1, . . . , n; at last T k

j = T k
j (ρj , ρk) is the transition rate from lane

j to lane k, with j − k = ±1.
In this example the intra-lane dynamics is described by a LWR scalar equation. More

general n-lanes models can be obtained by describing the dynamics in each lane with
more general single-lane models, for instance using a 2 × 2 system of conservation laws,
also called a “higher order” model. Typical examples are the models proposed by Aw
and Rascle [1] or Colombo [4]. It may be also reasonable to use different analytical
descriptions for the dynamics of the different lanes, thus mixing scalar equations and
systems.

All the situations described above fit within a unique analytical framework, provided
by the class of systems

(0.2) ∂tuℓ + ∂x [fℓ(uℓ)] = gℓ(t, x, u) ℓ = 1, . . . n

where each state variable uℓ varies in R
mℓ . The above system is studied in [7].

However, traffic flow models usually display further structure. First, the interaction
among lanes reduces to that relating each lane to its neighbor(s). This amounts to
require, for instance, that the coupling source terms satisfy

(0.3) gℓ(t, x, u) = gℓ
ℓ−1(uℓ−1, uℓ, uℓ+1) − gℓ+1

ℓ (uℓ, uℓ+1, uℓ+2) , g0
−1 = gn+1

n = 0 ,
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where gℓ
ℓ−1 describes the amount of vehicles that pass from lane ℓ to lane ℓ − 1 per unit

time. Second, the conservation of
∑

ℓ

∫

uℓ dx follows from

(0.4)
n

∑

ℓ=1

gℓ = 0 .

We stress that the conservation of the “momentum variable” in higher order models is
often not required. Hence, in these models, the above sum is restricted to the source
terms in the density equations. We recall here that the introduction of source terms in
the momentum equations can used to simulate various realistic situations, see [3, 2]. In
particular, in the example (0.1) we have uℓ = ρℓ and both conditions (0.3) and (0.4) are
required.

Below, we extend the results in [5, 7] to prove the well posedness of the initial value
problem for (0.2) under the key assumption that the homogeneous part of the system is
of Temple type. We point out that this condition is satisfied in all the cited models.

The present analytical framework applies also to the case of various additional source
terms, for example those describing entries, exits or inhomogeneities (ascents, descents)
in the road, see [3].

It is reasonable to postulate that the lane changing rate at a point x̄ depends on a space
average of the traffic density before x̄. This leads to consider source terms satisfying (0.3)-
(0.4) but involving a causal convolution kernel. We will show therefore an extension of the
recent result [8] that ensures the well posedness of these nonlocal multilane traffic models.
This result allows, for instance, to use the techniques in [6] to estimate a posteriori the
various characteristic parameters.
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