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The computation of the effective Hamiltonian is a difficult and challenging problem which
arises in many applications related to the analysis of Hamiltonian systems, homogeniza-
tion and material science, see [7,5,4]. The characterization of the effective Hamiltonian
H in the framework of viscosity solutions has revitalized the efforts to find new methods
and efficient algorithms to compute it. For reader’s convenience let us recall that for
every p ∈ R

n the value H(p) can be characterized as the unique value of the right-hand
side for which the cell problem

(0.1) H(x, Du + p) = c x ∈ T
n

has a viscosity solution (Tn denotes the n-dimensional torus). Note that the Hamiltonian
H is assumed to be convex with respect to Du.
The basic computational effort then is to compute H(p) for p in a domain D and, for
p fixed, find an efficient numerical approximation for the cell problem via a sequence cn

in such a way that cn converges to H(p) as n tends to +∞. The amount of the above
computations can be huge even for low dimensional problems (i.e. n = 2, 3).
We can identify two basic steps in the algorithm. The first step consists in solving for
a given p ∈ D a sequence of cell problems for different right hand sides cn in order to
obtain an approximation of H(p). At this step a crucial role is played by the accuracy
of the numerical method used to solve the cell problem on a space grid Gx. The second
step, though computationally expensive, is much easier since it requires to iterate the
same process over a grid for p (we will denote this grid by Gp in the sequel). The final
value of H is obtained just interpolating over the values computed at the nodes of Gp.
Several methods have been proposed in the last few years to solve this problem. They rely
on different characterizations of the effective Hamiltonian and on various regularizations
of the cell problem. Let us examine the most significant ones. A first attempt to the
numerical approximation of the effective Hamiltonian has been proposed by Gomes and
Oberman in [8]. They compute the effective Hamiltonian via a discrete version of a
min-max representation formula

(0.2) H(p) = inf
u∈C1

per
(Tn)

sup
x∈Tn

H(x, Du + P )

where the infimum is taken over the space C1(Tn) of periodic function. It is important to
note that they do not solve the cell problem. Our approach relies on a discretization of
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(0.1). In this way we are able to compute both the effective Hamiltonian and a viscosity
solution.

To this end it is useful to recall two regularizations of the cell problem:
small-δ regularization

(0.3) δuδ(x) + H(x, Duδ + P ) = 0 in T
n

large-T regularization

(0.4) ut + H(x, Du + P ) = 0 in T
n × (0, +∞)

The approximation of the effective Hamiltonian relies on the following properties. Denote
by uδ the solution of (0.3). Under suitable assumptions (see [5]) −δuδ converges to H(P )
as δ goes to 0. Moreover, for any fixed x0 ∈ T, uδ(x) − uδ(x0) converges, up to a
subsequence, to a viscosity solution of (0.1). Now let u(x, t) be a solution of (0.4).

Under suitable assumptions, (see [4,2,1]) −u(x,t)
t

converges to H(P ) as t goes to +∞.
Moreover, for any fixed x0 ∈ T, u(x, t) − u(x0, t) converges, up to a subsequence, to a
viscosity solution of (0.1). The interested reader can find in [3] some estimates on the
rate of convergence. In the following section we will adopt the large-T regularization to
construct our scheme. A similar approach has been adopted by Qian in [9] using finite
difference schemes for the cell problem.

The goal of this paper is to propose a parallel version of the algorithm in [10,11] in
order to overcome the computational difficulties and open the way to applications in
higher dimensions.

1 The semi-Lagrangian approximation

A serial version of the semi-Lagrangian approximation has been proposed in [10] for
a general Hamiltonian (convex and coercive). For simplicity, we write it for the eikonal
equation, H(x, Du + p) = |Du + p| − f(x),

(1.1) un+1
i = min

a∈B(0,1)
{un(xi + a∆t) + a · p∆t} + [f(xi) + c]∆t.

where xi, i = 1, . . . , Nx are the nodes of Gx and we adopt the standard notation un
i =

u(xi, tn). Note that the value un(xi + a∆t) is computed by interpolation as usual for
SL schemes (see [6]). In particular, in our numerical tests we use a linear interpolation
reconstruction.

We fix the starting value c0 = −min f and update it by the iteration cn+1 = cn − v
where v =

∑
i u

n
i /∆x. This is possible because the method produces a sequence un which

converges to a solution u, see [10,11] for details.

The parallel SL scheme

As we said in the introduction the computational effort to solve even a two dimensional
problem is huge. For example, for a cell problem in T

2 = [0, 1]2 with a grid Gx of 32× 32
nodes and Gp of 16 × 16 we have to solve 256 cell problems over a grid of 1024 space
nodes.

These remarks motivate the introduction of a parallel algorithm. The nature of the
problem suggests to adopt a nested parallelism. A low-level parallelism for the domain
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decomposition of Gx, and a high-level parallelism for the domain decomposition of Gp.
The domain decomposition of Gx is obtained via OpenMP directives for shared memory
architecture. This avoids the communications bottleneck between the processors due to
the overlapping regions of the domain decomposition. For the domain decomposition
of Gp we use MPI, distributing the columns of the grid Gp between the processors.
So every processor solves the problem in a subdomain of Gp, and at every p the cell
problem is solved in parallel. In the following section we will show the advantages of
this technique. Note that the parallelization of the code is rather simple since only few
directives are needed to parallelize the loop over Gx and easy collective communications
allow to distribute and collect the data to parallelize the loop over Gp.

2 Numerical tests

Let us examine some results on the classical problem:

(2.1) |Du + p| − sin(2πx1) sin(2πx2) = H(p)

that is solved for p ∈ [0, 4]2 for different values of ∆p, and on the unitary torus T
2 for

different values of ∆x.
In the following tables, the rows show how the CPU time (in seconds) varies by increas-

ing the number of processors created by MPI (high-level loop); on the columns the same
information is given for the OpenMP loop (low-level). The reverse diagonals show the
behaviour for a fixed global number of processors (the product of the number of proces-
sors on the row times that on the columns). The tests are performed on an IBM Power5
(8 CPU at 1.9 GHz for each node) at CASPUR. The CPU time decreases along the rows
and the columns and sometimes also on the reverse diagonals. For example, Table 2.1
and 2.2 show the advantage of passing from an MPI parallelization with 32 processors to
an MPI parallelization with 16 processors, each one of them uses 2 processors managed
by OpenMP. This is more evident in Figure 2.1 and 2.2, where the speed-up and effi-
ciency for ∆x = 0.0625 and ∆p = 0.1 are represented. On the other hand this advantage
disappears for ∆p = 0.05 (see Table 2.3 and 2.4). Although in all the tests presented
the numbers of nodes of Gp are much greater than those of Gx, it is evident that when
increasing the number of nodes of Gx it is more convenient to increase the processors
managed by OpenMP rather than those by MPI.

# procs MPI 1 2 4 8 16 32
OpenMP

1 3154 1640 872 483 244 166
2 1603 831 442 245 123
4 900 468 247 137
8 552 286 151

Table 2.1: CPU time in seconds for different values of the number of CPU for ∆x = 0.0625,

∆p = 0.1
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# procs MPI 8 16 32
OpenMP

1 6528 3301 2244
2 3358 1702
4 1793

Table 2.2: CPU time in seconds for different values of the number of CPU for ∆x = 0.03125,

∆p = 0.1

# procs MPI 8 16 32
OpenMP

1 1650 908 459
2 880 486
4 493

Table 2.3: CPU time in seconds for different values of the number of CPU for ∆x = 0.0625,

∆p = 0.05

# procs MPI 16 32
OpenMP

1 12958 6594
2 6698

Table 2.4: CPU time in seconds for different values of the number of CPU for ∆x = 0.03125,

∆p = 0.05
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Figure 2.1: Speed-up for Table 2.1
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Figure 2.2: Efficiency for Table 2.1
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prepint, 2005.

4. M.C. Concordel, Periodic homogenization of Hamilton–Jacobi equation: Additive
eigenvalues and variational formula, Indiana Univ. Math. J., vol. 45, 1996, 1095–
1117.

5. L.C. Evans, Periodic homogenization of certain nonlinear partial differential equa-
tion, Proc. Roy. Soc. Edinburgh, vol. 120 A, 1992, 245–265.

6. M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton-Jacobi equa-
tions, discrete representation formulae and Goudonov methods, J. Comput. Phys.,
vol. 175, 2002, 559-575.

7. A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Cambridge University
Press, in press.

8. D.A. Gomes and A. Oberman, Computing the effective Hamiltonian using a varia-
tional approach, SIAM J. Cont. Opt., vol. 43, 2004, 798–812.

9. J. Qian, Two approximations for effective Hamiltonians arising from homogeniza-
tion of Hamilton-Jacobi equations, UCLA CAM report, 03-39, 2003.

10. M. Rorro, Numerical approximation of the effective Hamiltonian and of the Aubry
set for first order Hamilton–Jacobi equations, PoS Sissa cstna2005-016, 2005.

11. M. Rorro, An approximation scheme for the effective Hamiltonian and applications,
Applied Numerical Mathematics, Elsevier, to appear.


	The semi-Lagrangian approximation
	Numerical tests

