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1 Overview

The periodic forces imposed at the oars and due to the movement of the rowers induce
a secondary motion on the scull, causing an additional drag which may represent a
significant part of total dissipated energy. We have taken the approach of computing
the complete scull motion including pitching, vertical and horizontal movement. A full
dynamic model requires simulating rowers inertial forces, thrust forces at the oarlocks
and fluid-dynamic forces. It is a complex fluid-structure interaction problem that we
analyzed by coupling different fluid dynamic models with a dynamic model of the boat.

2 Reference frames

We denote with (O; X, Y, Z) the global (inertial) reference frame, and with eX , eY and
eX the corresponding versors. The X axis is directed horizontally and points towards the
bow, being aligned with the mean velocity of the boat. The Z axis is directed vertically
pointing upwards, while the water free surface is located at Z = h0, where h0 is a constant
value representing the undisturbed water level. Since only the motion in the (X, Z) plane
is studied, all the considered forces lie in this plane.

We also introduce a relative reference frame (Gc; x, y, z), attached to the boat hull
(supposed to be a rigid body) and centered in its baricenter Gc. The x, y, z axes versors
in this frame of reference will be ex, ey and ez.

With these assumptions, the pitch angle φ is the angle between eX and ex, and is
positive when the bow lowers. Once we have introduced the rotation matrix

(2.1) R(φ) =





cos φ 0 − sin φ
0 1 0

sin φ 0 cos φ



 ,

we can write the coordinate transformation law for a generic point P

(2.2)




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X
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Z



 = RT (φ)





rP
x

rP
y
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z



+





Gc
X

Gc
Y

Gc
Z





where positions in the global system are denoted by capital letters.
Transformations between velocity and acceleration vectors in the two reference frames

assume the form

(2.3) VP = Ṗ = vP + ĠC + ω × (P− GC),
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(2.4) AP = P̈ = aP + G̈C + ω̇ × (P− GC) + ω × ω × (P −GC) + 2ω × vP ,

being ω = φ̇ eY the angular velocity vector. Here, the dot symbol denotes time deriva-
tives.

3 Dinamic system and governing equations

We assume now that the motion of the rowers in the relative reference frame is assigned,
being gvi

= gvi

(t) = (gvi

x (t), gvi

z (t)) the motion law for the baricenter of the i-th rower,
that can be recast in the absolute reference frame by means of transformation (2.2). We
can finally write the motion equations for a system composed by scull, oar, and oarsmen,
namely

MG̈c +

(

O(φ)
n
∑

i=1

Mvi

gvi

)

φ̈ =(3.1a)

− 2φ̇O(φ)

n
∑

i=1

Mvi

ġvi

− φ̇2RT (φ)

n
∑

i=1

Mvi

gvi

−RT (φ)

n
∑

i=1

Mvi

g̈vi

+

+ RT (φ)

n
∑

i=1

f ri

(t) + Mg + Fa,

(

RT (φ)

n
∑

i=1

Mvi

gvi

)

× G̈c +

(

Ic
y +

n
∑

i=1

Mvi

||ġvi

||2

)

φ̈ =(3.1b)

− 2φ̇
n
∑

i=1

Mvi

gvi

· ġ −
n
∑

i=1

Mvi

gvi

× g̈ +
n
∑

i=1

Mvi

(Gvi

X − Gc
X)g + Ma.

Here g is the module of gravity acceleration (9.81 m/s2), Mvi

is the mass of the i-th
rower, Ic

y is the moment of inertia of the boat around the y axis, while the matrix O(φ)
is defined as

(3.2) O(φ) =
d

dφ
RT (φ) =

[

− sin φ cos φ
− cos φ − sin φ

]

.

We now have a system of three second order ordinary differential equations in the time
variable, in which u = [Gc

X(t),Gc
Z(t), φ(t)] is the unknown vector, its components being

the position of the scull center of gravity Gc(t) and the pitch angle.
To close the problem, however, we must determine the values of the traction forces

applied on each of the oars —namely f ri

(t)— and the forces and moments acting on the
hull, due to its interaction with the surrounding water.
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4 Oars traction forces and forces due to the hull interaction with water

The former kind of forces can be computed by analyzing the dynamics of the oar itself.
Assuming a rigid oar having negligeble mass, we can write, composing the linear and
angular (around the oarlock) momentum conservation law

(4.1) f ri

(t) =
rb

Lr

fsi

(t)

being Lr the total lenght of the oar, and rb the distance bethween the rower’s hands
and the oarlock. The oarlock forces fsi

(t) can be measured by means of suitable sensors
placed in the oarlock, and are therefore assigned.

The hydrostatic and hydrodynamic forces and moments are decomposed in the following
way

(4.2)
Fa = SaeZ − RaeX + Da,
Ma = Ma

S + Ma
D.

Here Sa and Ma
S are the hydrostatic lift and moment respectively, and depend on the

instantaneous position of the hull. The drag due to the primary motion Ra is computed
by means of the formula

Ra =
1

2
ρSrefCdX(Ġc

X)2,

being Sref a reference surface and CdX a drag coefficient, computed for each boat, per-
forming a Navier–Stokes simulation of the stationary motion.

Finally, the forces and moments due to the secondary motions of the boat, namely Da

and Ma
D, are computed by solving a suitable elliptic partial differential problem (see [2])

for the complex velocity potential Ψs = αs + iβs where αs and βs are two scalar functions
representing the velocity potential and the stream function.

It turns out that these forces present a component proportional to the acceleration
vector ü — the mass matrix M— and a component proportional to the velocity vector
u̇ —the damping matrix S.

Introducing these quantities in equations (3.1) we get a system of the form

(4.3) A(t,y(t))
dy

dt
(t) = B(t,y(t)), t > 0

where y = [Gc
X(t),Gc

Z(t), φ(t), Ġc
X(t), Ġc

Z(t), φ̇(t)]. Employing y instead of u leads to a
first order ODE system, instead of a second order one. This allows the use of several nu-
merical schemes developed for this kind of problems. In particular, we employed schemes
included in GSL libraries (see [1]).

5 Results

The algorithm here illustrated has been implemented in a C++ language code. A
typical solution for problem (4.3) is depicted in Fig. 5, representing a time hystory plot
for each component of y vector. The algorithm proves to be robust, returning physically
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correct results for any crew configuration tested. Still, improvements have to be made in
several areas.
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