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Abstract

The pricing of implicit options embedded in life insurance products is of vital importance

for the insurance industry. Risk management, strategic asset allocation, and product design

depend on the correct evaluation of the options sold. Also regulators are interested in such

issues since they have to be aware of the possible scenarios that the overall industry will face

with. Our objective is to use a stochastic programming approach to determine the fair price

of the options embedded in policy contracts. We provide extensive numerical experiment to

describe the behavior of the insurance policies for different setting of the key parameters, market

and regulatory constraints.

1 Insurance products with guarantee

We focus on insurance contracts whose benefits are linked to a reference fund. The
value of the reference fund at time t is It. The insurer funds his initial investment in the
reference fund by raising capitals from both policyholders, which pay L0 = αI0 as the
premium for the contracts, and equityholders, which invest the amount E0 = (1 − α) I0

in the company’s asset.
Policies are equipped with a minimum guarantee provision, which entitles policyholders

to increment over time their premiums according to a minimum guaranteed interest rate
rG, so that at maturity the guaranteed amount is LT = L0e

rGT . Besides the minimum
guarantee provision, policyholders are allowed to participate in the firm’s profit by a
bonus distribution mechanism. Thus, the final payoff of the policyholder is,

(1.1) Φ(IT ) = δ
[
α IT − LG

T

]+

︸ ︷︷ ︸

Bonus option

+ LG
T −

[
LG

T − IT

]+

︸ ︷︷ ︸

Defaultable bond payoff

The coefficient δ measures the percentage of firm’s profit which is corresponded to policy-
holders, while the payoff of the Put option is embedded to take into account the default
possibility of the insurer. We also extended our analysis to comprise regulatory restric-
tions. These are made explicit by imposing a barrier that forces the option to expire if
It touches a barrier,

(1.2) It ≤ λL0e
rG t ≡ Bt t ∈ [0, T [.
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As explained in Grosen at al. (2002) this is equivalent to the monitoring, on the regulators
side, of the insurance assets value. Only in case that It is above the barrier, the option
will be allowed to expire at maturity.

2 Super-replication via stochastic programming

We describe in this section a stochastic programming model to price European contin-
gent claims. Details about the model and its use for option pricing can be found in King
(2002) and King at al. (2005).

We will base our computational machinery on a discrete non-recombining scenario tree.
Following King’s notation, in the scenario tree, every node n ∈ Nt, t = 1, . . . , T , has
a unique ancestor node a(n) ∈ Nt−1, and every node n ∈ Nt, t = 0, . . . , T − 1, has a
non-empty set of child nodes C(n) ⊂ Nt. The collection of all the nodes is denoted by
N ≡

⋃T

t=0 Nt.
The market consists of J + 1 securities with prices St =

(
S0

t , . . . , S
J
t

)
(J risky assets

plus a numeraire asset).
In presence of risk factors others than the traded securities, the process St is augmented

by K real–valued variables ξt =
(
ξ1
t , . . . , ξ

K
t

)
whose path histories match the nodes n ∈

Nt, for each t = 0, 1, 2, . . . , T .
We denote by θn =

(
θ0

n, . . . , θJ
n

)
the portfolio of securities held by an investor in state

n ∈ N . The value of the portfolio in state n ∈ N is,

(2.1) Sn · θn ≡
J∑

j=0

Sj
nθj

n.

We say that the portfolio process {θn}n∈N super-replicates the cashflow generated by
the contingent claim, if the funds available for investment in each state n ∈ N are
restricted to those yielded by price changes in the portfolio held at state a(n) (self-
financing portfolios), and its value is non-negative. The writer’s price of the contingent
claim is the smallest amount of current cash, V , needed to start a trading strategy to
back the payout process {Fn}n∈N with no risk. The option price is then given by the
following stochastic optimization problem,

Minimize
V,θ

V(2.2)

s.t. S0 · θ0 = V − F0(2.3)

(W) Sn · (θn − θa(n)) = −Fn n ∈ Nt, t ≥ 1(2.4)

Sn · θn ≥ 0, n ∈ NT .(2.5)

This problem can easily be extended to handle the major sources of market incomplete-
ness, such as trading constraints, transaction costs and difference between borrowing and
lending. Note that also non-tradeability of the underlying can be considered by assuming
that the policy’s reference fund in non-tradeable.

3 Implementation notes and results

We ran our experiments assuming a policy horizon T = 10 years. The time interval
between two periods is set to 1.67 years, for a total of 6 time periods. To run our
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experiments in a reasonable time, we assumed that our market is made up by 4 assets
plus one risk free (J = 4+1). Note that, the computational time depends on the number
of assets, the discretization adopted and the operational constraints. In the worst case—
the problem with transaction costs, that basically doubled the number of variables—the
computational time amount to an half an hour (CPU Pentium 4, 2.4 GhZ).

To encompass the more general case, that is when the underlying asset is not tradable,
the reference fund, I, is not included among the J assets, therefore, the hedging portfolio
is formed by the four risky asset plus the risk free.

We solved the optimization models using the algebraic modelling language GAMS of
Brooke at al. (1992).

The price of the contract depends on many parameters. The most important ones are:
the minimum guarantee rate (rG), the participation coefficient (δ), the leverage (α), the
barrier buffer parameter (λ). Not all the combinations of these parameters determine a
fair value of the insurance contract. In particular, let us denote by V (0, I0, rG, δ, α, λ)
the value at time 0 of the insurance contract. The latter is said to be fair if the initial
policyholder’s contribution, L0, is equal to the initial market value of the purchased claim,
that is,

(3.1) L0 ≡ αI0 = V (0, I0, rG, δ, α, λ)

We adopt a matching moment method to generate scenario trees. For each asset we fit
expected value, variance and covariances of log-returns. The method may also fit skew-
ness, kurtosis and higher-order statistical properties. We include martingale (Klassen,
2002) constraints to avoid arbitrage. The generation is executed by the recursive reso-
lution, from root node to final nodes, of highly non-linear and non-convex optimization
problems, solved with GAMS-CPLEX. See Appendix for a description of our results.
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Figure 3.1: The relationship between leverage and participation rate. The minimum guarantee

rate is fixed at 2% per year and the volatility of the reference fund is 10% per year. In a

complete market our approach perfectly replicates Montecarlo simulation.
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Figure 3.2: Hedging portfolios for different levels of the leverage. Higher values of the leverage

imply higher values of the participation rate. In these cases, the bonus provision will prevail on

the minimum guarantee, and the hedging portfolios will be more shifted towards those assets

with statistical properties more similar to the underlying asset.
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Figure 3.3: The relationship between leverage and participation rate when transaction costs

and borrowing constraints are introduced. The shaded area represents the feasibility region

where both leverage and and participation rate are effective.
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Figure 3.4: The effect of market incompleteness on regulatory constraints. The insurance

contract evaluated taking into account of the transaction costs lies well below the feasibility

area. A possible solution would be to lower the minimum guarantee—from 2% to 1%— so that

the curve moves upwards.
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