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This work on constrained optimization problems presents preliminary results using
Differential Evolution (DE) (Storn and Rice, 1997) as a tool to search in complex fitness
landscape. Penalty functions were not used and a simple feasibility rule was implemented
to choose between feasible and infeasible solutions. Equality constraints are dealt with a
fixed tolerance and no extra diversity mechanism was used.

To prove the effectiveness of the approach a set of well known functions (Runarsson
and Yao, 2000) was used and the comparison was made against the SMES algorithm
(Mezura Montes and Coello Coello, 2005), which represents a state-of-the-art evolution-
ary algorithm in constrained optimization problems. The aims of this work is to maintain
a simple approach and verify whether simplicity could also be an effective way in con-
strained optimization problems.

Differential Evolution is a search method that uses vectors of real numbers to represent
its individuals. The idea of DE is to generate new vectors as a weighted sum of the differ-
ence between two or more vectors taken from the population. Since there is no mutation
the number of parameters required by DE is minimal compared to other algorithms. In
order to choose between feasible and infeasible solutions the same operator implemented
in SMES was used. As stated in (Mezura Montes and Coello Coello, 2005) this operator
works as follow: 1) between two feasible solutions, the one with the highest fitness value
wins; 2) if one solution is feasible and the other one is infeasible, the feasible solution wins;
3) if both solutions are infeasible, the one with the lowest sum of constraint violation is
preferred.

The strategy used for DE is named rand/1/exp. The population is represented by
vectors of fixed length N . The initial population is created randomly respecting the
boundaries of each variable. The parameters used are: F as a weighting constant, and
CR as crossover probability. The following algorithm is repeated until the maximum
number of function evaluations is reached:

1. For each individual v in the population

2. Select randomly three individuals x1, x2 and x3

3. Compute the individual v′ with the following algorithm:

i = rand (1, N);
L = 1;
do

v′
i = x1

i + F · (x2
i − x3

i )
i = (i + 1) mod N
L = L + 1

while rand() < CR and (L < N)
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4. Copy in the new population either v′ or v depending on the feasibility-based com-
parison defined earlier. The algorithm repeat from 1. until the new population is
completely filled.

SMES is an (µ+λ)-ES algorithm, where µ parents generate λ offsprings and all compete
to survive in the next generation. It uses self-adaptive mutation and an hybrid panmictic
recombination. The results obtained by SMES are very competitive when compared to
other state-of-the-art techniques.

The key features of SMES are: 1) Diversity Mechanism, infeasible solutions survive in
next generations, this allow recombination between feasible solutions and infeasible ones.
2) Dynamic Tolerance, a dynamic mechanism is used to deal with equality constraints.
The tolerance value ε is decreased at every generation.

The settings used in the experiment are the following: both algorithms were allowed to
perform 240000 objective function evaluations. The population size of DE is fixed to 50
individuals, crossover probability CR = 0.9 and weighting factor F = 0.7. These setting
were chosen after several experiments. The authors also suggest similar parameters (Storn
and Rice, 1997). The tolerance for equality constraints is fixed to 0.0001.

SMES uses populations size of µ = 100, λ = 300 and the tolerance is updated with the
following formula ε(t + 1) = ε(t)/1.00195. The initial value is set to ε0 = 0.001. Accord-
ingly with the formula, in the last generation, the final value will be εT = 0.0004. For
function g03 and g13 those parameters where changed due to some difficulties reported
to produce feasible solutions (Mezura Montes and Coello Coello, 2005).

To prove the effectiveness of the approach a set of 13 functions is considered. These func-
tions represent a well-know benchmark in constrained optimization problems (Runarsson
and Yao, 2000). Results summarized in Table 0.1 are obtained considering 30 indepen-
dent runs for each algorithm. Considering that both algorithms are allowed to perform
the same maximum number of objective function evaluations, DE is able to obtain the
optimal solution in functions g05, g07, g09, and g10 in comparison with SMES.

The results obtained by DE on the “mean”, “median” and “worst” solutions also present
an improvement over SMES. For function g02, DE was not able to find the optimum,
however the result is better than that one achieved by SMES.

SMES obtains a better results for function g01, because of a better “mean” and “worst”
solution, and for function g13, because DE is not able to find a feasible solution.

In conclusion, it was shown that even with a simple evolutionary algorithm with few
parameters and a fixed tolerance to handle equality constrains it is possible to compete
with a state-of-the-art algorithm such as SMES. Further works are needed to investigate
the relations between the fixed tolerance value and the ability to find feasible solutions.
It is also important to prove the approach with more test functions to ensure the quality
of the algorithm.
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Problem Optimal Best Mean
SMES DE SMES DE

g01 -15 -15 -15 -15 -14.433
g02 0.803619 0.803601 0.803616 0.785238 0.803590
g03 1.000 1.000 1.000 1.000 1.000
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539
g05 5126.498 5126.599 5126.498 5174.492 5126.498
g06 -6961.814 -6961.814 -6961.814 -6961.284 -6961.814
g07 24.306 24.327 24.306 24.475 24.306
g08 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.632 680.63 680.643 680.63
g10 7049.25 7051.903 7049.25 7253.047 7103.039
g11 0.75 0.75 0.75 0.75 0.75
g12 1.000 1.000 1.000 1.000 1.000
g13 0.053950 0.053986 0.053941 0.166385 0.331386

Problem Optimal Median Worst
SMES DE SMES DE

g01 -15 -15 -15 -15 -12
g02 0.803619 0.792549 0.803597 0.751322 0.803466
g03 1.000 1.000 1.000 1.000 1.000
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539
g05 5126.498 5160.198 5126.498 5304.167 5126.498
g06 -6961.814 -6961.814 -6961.814 -6952.482 -6961.814
g07 24.306 24.426 24.306 24.843 24.306
g08 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.642 680.63 680.719 680.63
g10 7049.25 7253.603 7049.25 7638.366 7250.967
g11 0.75 0.75 0.75 0.75 0.75
g12 1.000 1.000 1.000 1.000 1.000
g13 0.053950 0.061873 0.438802 0.468294 0.438802

Table 0.1: Statistical results of best, mean, median and worst solutions obtained in 30 indepen-
dent runs, with 240000 objective function evaluations.
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