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Mixed algebraic methods and local tensor product

Costanza Conti
Dip. di Energetica ”Sergio Stecco”, Università di Firenze,

Via Lombroso 6/17, 50134 Firenze, Italy.

costanza.conti@unifi.it

Rossana Morandi, R.M. Spitaleri
Istituto per le Applicazioni del Calcolo

viale del Policlinico 137, 00161, Roma, Italy.

spitaleri@iac.rm.cnr.it

In algebraic numerical grid generation, transfinite interpolation methods are useful
means to construct a grid interpolating the boundary of a given domain (see [1], [2],
[3]). In spite of their simple definition and low computational cost they have lack of free
parameters useful to modify the grid according to specific requirements. In other words,
the main drawback of classic transfinite interpolation techniques is that no control of the
grid quality apart from the boundary is possible. To solve this problem, a mixed algebraic
grid which both conforms the boundary of a given physical domain and possess local free
parameters for modeling the grid in the interior has been proposed in [6]. Mixed schemes
are obtained from the Control Point Form Method investigated by Eiseman in [4] and
[5]. Roughly speaking, a mixed scheme is defined trough a smooth transformation from
the parameter domain [0, 1]2 into the physical domain Ω consisting of two parts, say,

X := X∂Ω + XΩ̇.

The first part, X∂Ω, takes care of the grid near the boundary and guarantees the transfinite
interpolation of ∂Ω. The second part, XΩ̇, allows to model the grid in the interior of the
domain Ω. The key mathematical ingredients in defining X are transfinite interpolation
and B-spline tensor product approximation. Indeed, X is expressed as

X := (P1 ⊕ P2)(∂Ω − ∂TP ) + TP ,

where TP stands for a tensor product of univariate B-splines and P1, P2 for two transfinite
interpolant operators applied to the boundary curves of Ω and of the image of TP (for
more details see [5], for example). The Boolean sum is to guarantee boundary conformity,
while TP is to provide more degrees of freedom in generating workable meshes. In fact,
TP is linear combination of functions with control points as coefficients that can be
relocated according to some grid quality criteria. This fact is used in [7] where an
optimization procedure is proposed to improve the grid quality by moving the control
points. Now, classical tensor product functions have many advantages such as easy and
cheap computation, simple derivation with respect to any variable, just to mention the
more significant ones. Unfortunately, they also present a severe inconvenient. In fact,
in case we need more control points in a specific part of the grid to control it locally,
we are forced to add control points also in other regions. These are the two strips
intersecting each other in the region of interest. In order to shortcut this drawback while
keeping most advantage of tensor product functions, we here propose the use of a class
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of functions whose restriction on subsets are B-spline tensor product functions, while the
global function is not a tensor product. For shortness we call it a local tensor product

functions. This approach, already used in different contexts from mixed algebraic schemes
(see the recent papers [9], [10] and references quoted therein) allows us to define a new
mixed scheme particularly suitable for a local grid control. Actually, the use of local
tensor product functions appears particularly useful when a posteriori improvements of
the computed grid are required by optimization strategies (see, for example [6] and [7]).
Grid optimization means the improvement of an existing grid to achieve the optimal one
with respect to given criteria coming from the geometry or the physics of the problem
to be solved. This strategy is proposed in [7] and better investigated in [8] where the
initially set free parameters are modified following grid quality criteria. Possible quality
criteria are based on grid cell angles, areas, edge lengths and aspect ratios. These criteria
are used to construct objective functions to be minimized and the optimized algebraic
grids via an optimal locations of the control points. Here, by using local tensor product
functions, we are able to generate an a posteriori grid optimization algorithm working on
a small number of variables (the few new introduced control points) to obtain optimal
algebraic grids. In other words, we are able to achieve optimal algebraic grids by a
cheap generation combined with a cheap optimization. In practice, the physical domain
Ω is split in sub-regions and locally modified in order to generate a better grid. This
is possible thanks to the use of local tensor product functions that allows us to add
control points (and B-splines) only in the area of interest and then relocate them after
an a posteriori optimization process. The resulting strategy is better summarized by the
following procedure.

Local optimization procedure

• Input the boundary curves, the grid size, the number of control points

• Set the initial values for the free parameters

• Generate the mixed algebraic grid X 0

• Determine the regions where to insert extra control points and extra B-spline bases

• Select an objective function based on some quality criteria

• Move the added control points to minimize the objective function

• Compute the optimized grid X ∗

We conclude by comparing the algebraic grid obtained before and after a local modifica-
tion of control points (left and right pictures, respectively) by using a particular objective
function ([7],page 12). The advantage of the insertion of new control points and their
relocation in sub-regions is evident.


