Messanae Universitas Studiorum

Sul rango del modulo delle derivazioni di un anello non contenente corpi

Utano, Rosanna (1982) Sul rango del modulo delle derivazioni di un anello non contenente corpi. Accademia Peloritana dei Pericolanti - Classe di Scienze FF.MM.NN., LX (1). pp. 163-178.

[img]
Preview
PDF
atti_3_1982_163.pdf

Download (2MB)

Abstract

Let ($A$, $m$) be a local noetherian ring, containing no corps and such that char ($A/m$)=p>O, We will prove, when $A$ is reduced and the ideal $p$ $A$ isn’t necessarily prime, the immersion of Der ($A$) (where is a coefficient ring of A = m-adic completion of $A$) into $A^r$ (r=dim (A)— 1) if $p$ isn’t a 0-divisor and only into Ar+1 if p is a 0-divisor, under some restrictìve conditions on $A$ and on the systems of parameters of $A$. In the case: $A$ complete, $p \in m^2$ and the module \Omega of differentials of A over $I$ formally projective over $I$ we will, prove that rank Der” (A)=Dim (A), where Dim (A) is the dimension of imn2ersion of A and R is a particular coefficient ring of A.

Item Type: Article
Subjects: M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali > 1982
M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Medico-Biologiche > 1982
M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Lettere, Filosofia e belle Arti > 1982
Depositing User: Dr PP C
Date Deposited: 08 Apr 2013 08:21
Last Modified: 08 Apr 2013 08:21
URI: http://cab.unime.it/mus/id/eprint/1075

Actions (login required)

View Item View Item