Messanae Universitas Studiorum

Sul rango del modulo delle derivazioni di un anello non contenente corpi

Utano, Rosanna (1982) Sul rango del modulo delle derivazioni di un anello non contenente corpi. Accademia Peloritana dei Pericolanti - Classe di Scienze FF.MM.NN., LX (1). pp. 163-178.

[img] PDF
atti_3_1982_163.pdf
Restricted to users from Unime

Download (2MB) | Request a copy

Abstract

Let ($A$, $m$) be a local noetherian ring, containing no corps and such that char ($A/m$)=p>O, We will prove, when $A$ is reduced and the ideal $p$ $A$ isn’t necessarily
prime, the immersion of Der ($A$) (where is a coefficient ring of A = m-adic completion of $A$) into $A^r$ (r=dim (A)— 1) if $p$ isn’t a 0-divisor and only into Ar+1 if p is a 0-divisor, under some restrictìve conditions on $A$ and on the systems of parameters of $A$.
In the case: $A$ complete, $p \in m^2$ and the module \Omega of differentials of A over $I$ formally projective over $I$ we will, prove that rank Der” (A)=Dim (A),
where Dim (A) is the dimension of imn2ersion of A and R is a particular coefficient ring of A.

[error in script]
Item Type: Article
Subjects: M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali > 1982
M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Medico-Biologiche > 1982
M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Lettere Filosofia e belle Arti > 1982
Depositing User: Dr PP C
Date Deposited: 08 Apr 2013 08:21
Last Modified: 08 Apr 2013 08:21
URI: http://cab.unime.it/mus/id/eprint/1075

Actions (login required)

View Item View Item