Messanae Universitas Studiorum

Sul rango del modulo delle derivazioni di un anello non contenente corpi

Utano, Rosanna (1982) Sul rango del modulo delle derivazioni di un anello non contenente corpi. Accademia Peloritana dei Pericolanti - Classe di Scienze FF.MM.NN., LX (1). pp. 163-178.

[img]
Preview
PDF
Download (2470Kb) | Preview

    Abstract

    Let ($A$, $m$) be a local noetherian ring, containing no corps and such that char ($A/m$)=p>O, We will prove, when $A$ is reduced and the ideal $p$ $A$ isn’t necessarily
    prime, the immersion of Der ($A$) (where is a coefficient ring of A = m-adic completion of $A$) into $A^r$ (r=dim (A)— 1) if $p$ isn’t a 0-divisor and only into Ar+1 if p is a 0-divisor, under some restrictìve conditions on $A$ and on the systems of parameters of $A$.
    In the case: $A$ complete, $p \in m^2$ and the module \Omega of differentials of A over $I$ formally projective over $I$ we will, prove that rank Der” (A)=Dim (A),
    where Dim (A) is the dimension of imn2ersion of A and R is a particular coefficient ring of A.

    Item Type: Article
    Subjects: M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali > 1982
    M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Medico-Biologiche > 1982
    M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Lettere, Filosofia e belle Arti > 1982
    Divisions: UNSPECIFIED
    Depositing User: Dr PP C
    Date Deposited: 08 Apr 2013 10:21
    Last Modified: 08 Apr 2013 10:21
    URI: http://cab.unime.it/mus/id/eprint/1075

    Actions (login required)

    View Item