From integral manifolds and metrics to potential maps

Udriste, Constantin (2005) From integral manifolds and metrics to potential maps. Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze FF.MM.NN (LXXXI-LXXXII). ISSN 1825-1242

[img]
Preview
PDF
C1A0401008.pdf

Download (160kB)
Official URL: http://antonello.unime.it/atti

Abstract

Our paper contains two main results: (1) the integral manifolds of a distribution together with two Riemann metrics produce potential maps which are in fact least squares approximations of the starting integral manifolds; (2) the least squares energy admits extremals satisfying periodic boundary conditions. Section 1 contains historical and bibliographical notes. Section 2 analyses some elements of the geometry produced on the jet bundle of order one by a semi-Riemann Sasaki-like metric. Section 3 describes the maximal integral manifolds of a distribution as solutions of a PDEs system of order one. Section 4 studies Poisson-like second-order prolongations of first order PDE systems and formulates the Lorentz-Udri

Item Type: Article
Subjects: M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali
Depositing User: Mr Nunzio Femminò
Date Deposited: 10 Jun 2005
Last Modified: 13 Apr 2010 11:21
URI: http://cab.unime.it/mus/id/eprint/264

Actions (login required)

View Item View Item