The influence of four-particle correlations on the parametric polariton amplification

Salvatore Savasta*, Omar Di Stefano, and Raffaello Girlanda

Istituto Nazionale per la Fisica della Materia INFM and Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate, Università di Messina Salita Sperone 31, I-98166 Messina, Italy

We present a microscopic theory of parametric polariton amplification in semiconductor microcavities including the influence of exciton–exciton correlations beyond mean-field. The complexity induced by the Coulomb interaction between electrons determines the noninstantaneous character of exciton–exciton collisions. We find that the observed great enhancement of gain when increasing the polariton splitting origins from the unique interplay of the noninstantaneous nature of exciton–exciton interactions with the strong coupling regime giving rise to polaritons.

Polaritons in semiconductor microcavities (SMCs) are two-dimensional eigenstates resulting from the strong resonant coupling between cavity-photon modes and two-dimensional excitons in embedded quantum wells (QWs) [1]. The dynamics and hence the resulting energy bands of these mixed quasi-particles are highly distorted respect to those of bare excitons and cavity photons. The exciton-photon coupling rate V determines the splitting (2V) between the two polariton energy bands. The huge phase-coherent amplification of cavity-polaritons recently demonstrated [2] is attracting great attention [3–8, 10] also for the possible future development of all-optical devices [11]. More recently it has been shown that, increasing the exciton-photon coupling, greatly increases amplification [11] (gains up to 5,000 have been observed), allowing the design of several possible microscopic devices approaching room temperature operation.

We present a microscopic theory of parametric polariton amplification in semiconductor microcavities including the influence of exciton–exciton correlations beyond mean-field. We find that the strong coupling of excitons with cavity-photons alters the excitonic dynamics during exciton–exciton collisions, producing a modification of the effective scattering rates. Since the dynamics of the coupled excitons and photons is determined by the exciton-photon coupling rate, its variation is able to affect significantly exciton–exciton collisions and hence the amplification process. Thus we show that the possibility of observing very large gains is a consequence of the coherent control that the exciton–photon interaction exerts on the not instantaneous exciton–exciton collisions. This control is able to produce almost decoherence-free exciton–exciton collisions of great importance for the development of future all-optical devices.

Coherent amplification of polaritons requires a coupling mechanism able to transfer polaritons from a reservoir (in this case provided by polaritons resonantly excited by a pump laser pulse on the lower polariton dispersion) to the signal mode, while conserving energy and momentum. As shown by the microscopic theory of parametric polariton amplification [8], polaritons of different modes are coupled

* Corresponding author: e-mail: Savasta@unime.it
via their excitonic content, the coupling being provided mainly by the Coulomb interaction between excitons (also the anharmonic part of the exciton-photon interaction contributes). The microscopic theory of parametric polariton amplification [8, 9] puts forward the parametric and coherent nature of this process. It also shows that the resulting Coulomb coupling strength is given by the exciton–exciton (XX) scattering rate [18]
\[V_{XX} \approx 1.52E_0a_0^2 \]
(\(E_0 \) is the exciton binding energy and \(a_0 \) is the exciton Bohr radius) times the exciton fraction of the interacting polariton modes. This effective polariton-polariton interaction scatters a pair of pump polaritons into the lowest-energy state and into a higher-energy state (usually known as the idler mode) (energy and momentum conservation requires \(2\omega_k = \omega_0 + \omega_{2k} \), where \(\omega_k \) is the energy of a pump polariton injected with an in-plane wavevector \(k \)). The scattering process is stimulated by a weak signal beam injected perpendicular to the cavity (\(k = 0 \)) that is thus greatly amplified. It has recently been shown that, increasing the exciton-photon coupling \(V \) by inserting a large number of QWs into the cavity, greatly increases amplification [11]. According to mean-field descriptions, the gain is limited only by the pump depletion and (when injecting a small signal beam) can thus reach very high values also for small values of \(V \) (unless some additional saturation mechanism is introduced). Moreover according to these descriptions, inserting more QWs just lowers the polariton-polariton interaction, without changing the structure of pertinent equations (the exciton and photon contents of the 3 interacting modes result to be independent on \(V \)). From this observation and from a direct inspection of the pertinent equations, it descends that, increasing the exciton-photon coupling, should not greatly increase the amplification of a weak signal beam in contrast with the spectacular experimental observations [11].

The mean-field theory of the optical response of electron-hole pairs assumes that collisions are instantaneous and only the mean free time between collisions matters. Although the mean-field theory has enjoyed considerable success [9, 14], recent studies revealed that collisions between excitons are more complex (see [13] and references herein cited). They involve multiparticle (at least 4-particle) entangled states. This complexity induced by the Coulomb interaction between electrons, determines the finite duration of collisions [13, 15–19]. We find that the strong coupling of excitons with cavity photons, giving rise to polaritons, alters the excitonic dynamics during \(XX \) collisions, producing a modification of the effective scattering rates. As a consequence, a variation of the exciton-photon coupling rate \(V \) can affect significantly \(XX \) collisions, and hence, the amplification process. To analyze the influence of the finite duration of \(XX \) interactions on the parametric polariton amplification, we use a microscopic description where the hierarchy of higher order density matrices has been closed by invoking the dynamics controlled truncation (DCT) scheme [20] in the coherent limit. The intracavity light-field is described within the quasi-mode scheme [16]. The time evolution of the coupled exciton \((P_k) \) and photon waves \((E_k) \) including finite duration of \(XX \) collisions [12, 16] can be described by the following set of coupled equations,

\[
\begin{align*}
\frac{\partial}{\partial t} E_k &= -(\gamma_E + i\omega_E^\text{c}) E_k + iVP_k + t_e E_k^\text{m} \\
\frac{\partial}{\partial t} P_k &= -(\gamma_P + i\omega_P^\text{c}) P_k + iVE_k - i\Omega_k^\text{NL},
\end{align*}
\]

where \(\omega_E^\text{c}, \omega_P^\text{c}, \) and \(\gamma_E, \gamma_P \) are the energies and dephasing rates of cavity photons and QWs excitons respectively. \(|E_k^\text{m}|^2 \) describes the input photon rate, \(t_e \) determines the beam fraction passing the cavity mirror \(t_e = \sqrt{\frac{2}{N}} \) for a cavity with equal mirrors. The exciton photon coupling \(V \) changes with the effective number of QWs \(N_{\text{eff}} \) which depends on the number of wells inside the cavity and their spatial overlap with the cavity-mode. In particular \(V = V_1 \sqrt{N_{\text{eff}}} \), where \(V_1 \) is the exciton-photon coupling for 1 QW. The relevant nonlinear source term, able to couple waves with different in-plane wave-vector \(k \), is given by \(\Omega_k^\text{NL} = (\Omega_k^\text{sat} + \Omega_k^{XX})/N_{\text{eff}} \), where the first term originates from the phase-space filling of the exciton transition,

\[
\Omega_k^\text{sat} = \frac{V}{n_{\text{sat}}} \sum_{k\neq k'} P_k^* P_{k'} E_{k'},
\]
The obtained 4-particle spectral density displays strong variations within the spectral region of interest. We calculated the corresponding Feynman diagrams (panel b of Fig. 1). The spectral function of these pairs determines the effective scattering rates as shown by Eq. (4) and by the correlation effects in SMCs sets out the relevance of polariton pairs in the scattering process. The energy of these pairs is approximately the pump, the signal and idler energies are all close to the corresponding polariton resonance values. Then it is a good approximation to replace the integral in Eq. (3) with a simpler expression, adopting the Weisskopf–Wigner [12, 17] approximation used to analyze the spontaneous emission associated to atomic transitions. Within this approximation, the dominant XX interaction term for the signal (0) and idler (2k) modes can be written as

$$
\Omega_{0k}^{XX} = 2F(\omega_0 + \omega_k) |P_k(t)|^2 P_{0|0k}(t) + F(2\omega_k) P_{2k|0}(t) P_k^2(t)
$$

where the complex quantity $F(\omega)$ is the Fourier transform of the memory kernel $F(t)$ plus the mean-field contribution V_{XX}. The first term produces a blue-shift of the polariton resonance and introduces an intensity-dependent dephasing mechanism. The second term provides the coupling mechanism able to transfer polaritons from the pump to the signal and idler modes. An analogous expression can be derived for the XX interaction of the pump mode. This Weisskopf–Wigner description of 4-particle correlation effects in SMCs sets out the relevance of polariton pairs in the scattering process. The energy of these pairs determines the effective scattering rates as shown by Eq. (4) and by the corresponding Feynman diagrams (panel b of Fig. 1). The spectral function $F(\omega)$ can be calculated by numerical diagonalization of the semiconductor Hamiltonian in the 4-particle subspace. We calculated it for QW excitons following a recent microscopic approach [18, 19] based on the T-matrix (Fig. 1a). The obtained 4-particle spectral density displays strong variations within the spectral region of interest around $2\omega_0$. In particular, moving towards the low energy region, the dispersive part Re $\langle F \rangle$ increases while the absorptive part that contrasts gain goes to zero. We also observe that the energies of the pump, signal, and idler polaritons are lowered with the increase of polariton splitting ($2V$). The increase of V thus modifies the effective collision rates in such a way that favors the amplification process. This analysis explains the large increase of gain observed when maximizing the exciton-photon coupling [11]. The gain curve versus the input pump power, obtained solving numerically the system of integro-differential equations (1) (6 equations two for each addressed mode) for GaAlAs-based samples with splitting $2V_a = 10.6$ meV ($N_{eff} = 4$) and $2V_b = 15$ meV ($N_{eff} = 8$) (Fig. 2), fully confirms this analysis. The calculated gain is defined as the total light intensity transmitted in the signal direction divided by the intensity transmitted in the absence of the pump beam. An increase of less than a factor $1/3$ in the polariton splitting produces an increase of the maximum achievable gain at $T = 10$ K (Fig. 2) of more than one order of magnitude in close agreement with experimental results [11]. The power dependence of gain (Fig. 2) shows an almost exponential growth and then saturates at high powers. The saturation of gain is mainly determined by the nonlinear absorption that...
is most relevant for the idler beam (according to Eq. (4) the idler nonlinear absorption is determined by \(\text{Im} \mathcal{F}(\omega_k) \)). We observe that the increase of the idler nonlinear absorbance is highly super-linear because the increase of the pump power produces both a direct increase of the exciton density and an increase of \(\text{Im} \mathcal{F}(\omega_{2k} + \omega_k) \) as a consequence of the blue shift of the polariton-pair resonance \(\omega_{2k} + \omega_k \) induced by \(\text{Re} \mathcal{F} \). We observe that mean-field calculations (also reported in Fig. 2) largely overestimate the experimentally observed gain at pretty high densities.

The results here shown clarifies the origin of the great enhancement of parametric gain observed when increasing the polariton splitting. They also demonstrate that exciton–exciton collisions in semiconductors can be controlled and engineered (e.g. by modifying the Rabi-splitting and/or acting on the cavity-exciton detuning). Moreover they give precise indications to produce almost decoherence-free collisions for the realization of all-optical microscopic switches and amplifiers. We believe that the availability of decoherence-free collisions will be crucial for the quantum control and manipulation of the polariton wavefunction inside the cavity and for the realization of microscopic sources of nonclassical light.

Fig. 1 a) Energy dependence of the effective exciton–exciton scattering potential. It has been calculated for a GaAs QW 7 nm wide with exciton binding energy 13.5 meV and using as dephasing rate of the 4-particle states \(\Gamma = 2\gamma_e = 0.58 \) meV. The tail of \(\text{Im}(\mathcal{F}(\omega)) \) at negative detuning \((\omega < 2\omega_0) \) is produced by \(\Gamma \) and vanishes for \(\Gamma \rightarrow 0 \). The inset shows the dynamics of the memory kernel \(F(\tau) \). b) Feynman diagrams describing the effective exciton–exciton interaction as modified by polariton effects.

Fig. 2 Power dependence of the integrated gain calculated for two GaAlAs based samples with splitting \(2V_a = 10.6 \) meV and \(2V_b = 15 \) meV, \(I_0 = 10^{13} \) photons per cm\(^2\) per pulse. The exciting light pulses have 250 fs duration. Material parameters of the two samples are coincident except for \(N_{\text{eff}} \). The decay rate of cavity photons through the mirrors \(\gamma_c = 0.25 \) meV is that of GaAlAs structures considered in Ref. [11].
References