Messanae Universitas Studiorum

Density-functional perturbation theory goes time-dependent

Baroni, Stefano and Rocca, Dario and Gebauer, Ralph (2008) Density-functional perturbation theory goes time-dependent. Atti della Accademia Peloritana dei Pericolanti - Classe di Scienze MM.FF.NN., LXXXVI (2). ISSN 1825-1242

[img]
Preview
PDF
Download (326Kb) | Preview

    Abstract

    The scope of time-dependent density-functional theory (TDDFT) is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most). In the static regime, density-functional perturbation theory (DFPT) allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix element of the resolvent of the Kohn-Sham Liouvillian super-operator. A DFPT representation of response functions allows one to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is finally conveniently evaluated using a newly developed non-symmetric Lanczos technique, which allows for the calculation of the entire spectrum with a single Lanczos recursion chain. Each step of the chain essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian or, for that matter, as a single time step of a Car-Parrinello molecular dynamics run. The method will be illustrated with a few case molecular applications.

    Item Type: Article
    Subjects: M.U.S. - Contributi Scientifici > 04 - Scienze della terra
    M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali
    Divisions: UNSPECIFIED
    Depositing User: Mr Nunzio Femminò
    Date Deposited: 26 Nov 2009
    Last Modified: 13 Apr 2010 13:14
    URI: http://cab.unime.it/mus/id/eprint/538

    Actions (login required)

    View Item