Caristi, Giuseppe (1999) Again on the derivatives of random functions. Accademia Peloritana dei Pericolanti, Classe di Scienze FF. MM. NN., 7677. pp. 277283.

PDF
atti_3_19981999_277.pdf  Submitted Version Download (924kB) 
Abstract
In this paper, two properties are shown to be valid for the derivatives of random functions: 1° Let $X(t,w)$ and $Y(t,w)$ be two random functions, defined in an interval I, which are mean derivables of order $p$ in the point $t_0 \in \ I$, then: The sum $X(t,w) + Y(t,w)$ is mean derivable of order $p$ in the point $t_0$ and we have: $(X+Y)'(t_0,w)=X'(t_0,w)+Y'(t_0,w)$. 2° Let $X(t,w)$ and $Y(t,w)$ be two indipendent random functions, defined in an interval I, which are mean derivables of order $p$ in the point $t_0 \in \ I$, then: The product $X(t,w)\cdot \ Y(t,w)$ is mean derivable of order $p$ in the point $t_0$ and we have: $(X \cdot \ Y)'(t_0,w)=X'(t_0,w) \cdot \ Y'(t_0,w)$. In a preceding paper we have shown two theorems on mean square derivatives of the random functions. In this paper we prove two theorems concerning the mean derivatives of order $p$ of the random functions.
Item Type:  Article 

Subjects:  M.U.S.  Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali > 199899 
Depositing User:  Dr A F 
Date Deposited:  18 Sep 2012 07:54 
Last Modified:  18 Sep 2012 07:54 
URI:  http://cab.unime.it/mus/id/eprint/605 
Actions (login required)
View Item 