Messanae Universitas Studiorum

On some types of vector fields on manifolds with Levi-Civita structure

Carfì, David (2002) On some types of vector fields on manifolds with Levi-Civita structure. Accademia Peloritana dei Pericolanti - Classe di Scienze FF.MM.NN., LXXX (1). pp. 67-73.

[thumbnail of atti_3_2002_67.pdf] PDF
atti_3_2002_67.pdf - Published Version
Restricted to users from Unime

Download (555kB) | Request a copy

Abstract

In this note one studies some types of vector fields on a Riemmannian manifold $M$ endowed with a Levi-Civita connection $\nabla$. For instance some types of closed torse forming, exterior concurrent vector fields, and quasi exterior concurrent vector fields. In addition exterior concurrents valued 1-form are also discussed. Finally we state and prove the following proposition:
Let X and X' be exterior concurrent vector fields with respective conformal scalar f and f'. Then F = X \land X' is a 2-exterior concurrent vector valued 1-form having

$(f+f') (x^b \land x^b')$

as concurrence form.

Item Type: Article
Subjects: M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali > 2002
M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Giuridiche, Economiche e Politiche > 2002
M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Lettere Filosofia e belle Arti > 2002
Depositing User: Dr PP C
Date Deposited: 19 Sep 2012 09:26
Last Modified: 20 Sep 2012 11:35
URI: http://cab.unime.it/mus/id/eprint/628

Actions (login required)

View Item View Item