Messanae Universitas Studiorum

On some types of vector fields on manifolds with Levi-Civita structure

Carfì, David (2002) On some types of vector fields on manifolds with Levi-Civita structure. Accademia Peloritana dei Pericolanti - Classe di Scienze FF.MM.NN., LXXX (1). pp. 67-73.

[img]
Preview
PDF - Published Version
Download (542Kb) | Preview

    Abstract

    In this note one studies some types of vector fields on a Riemmannian manifold $M$ endowed with a Levi-Civita connection $\nabla$. For instance some types of closed torse forming, exterior concurrent vector fields, and quasi exterior concurrent vector fields. In addition exterior concurrents valued 1-form are also discussed. Finally we state and prove the following proposition:
    Let X and X' be exterior concurrent vector fields with respective conformal scalar f and f'. Then F = X \land X' is a 2-exterior concurrent vector valued 1-form having

    $(f+f') (x^b \land x^b')$

    as concurrence form.

    Item Type: Article
    Subjects: M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali > 2002
    M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Giuridiche, Economiche e Politiche > 2002
    M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Lettere, Filosofia e belle Arti > 2002
    Divisions: UNSPECIFIED
    Depositing User: Dr PP C
    Date Deposited: 19 Sep 2012 11:26
    Last Modified: 20 Sep 2012 13:35
    URI: http://cab.unime.it/mus/id/eprint/628

    Actions (login required)

    View Item