Carfì, David (2002) On some types of vector fields on manifolds with Levi-Civita structure. Accademia Peloritana dei Pericolanti - Classe di Scienze FF.MM.NN., LXXX (1). pp. 67-73.
PDF
atti_3_2002_67.pdf - Published Version Restricted to users from Unime Download (555kB) | Request a copy |
Abstract
In this note one studies some types of vector fields on a Riemmannian manifold $M$ endowed with a Levi-Civita connection $\nabla$. For instance some types of closed torse forming, exterior concurrent vector fields, and quasi exterior concurrent vector fields. In addition exterior concurrents valued 1-form are also discussed. Finally we state and prove the following proposition:
Let X and X' be exterior concurrent vector fields with respective conformal scalar f and f'. Then F = X \land X' is a 2-exterior concurrent vector valued 1-form having
$(f+f') (x^b \land x^b')$
as concurrence form.
Item Type: | Article |
---|---|
Subjects: | M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali > 2002 M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Giuridiche, Economiche e Politiche > 2002 M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Lettere Filosofia e belle Arti > 2002 |
Depositing User: | Dr PP C |
Date Deposited: | 19 Sep 2012 09:26 |
Last Modified: | 20 Sep 2012 11:35 |
URI: | http://cab.unime.it/mus/id/eprint/628 |
Actions (login required)
View Item |