Carfì, David (2002) On some types of vector fields on manifolds with LeviCivita structure. Accademia Peloritana dei Pericolanti  Classe di Scienze FF.MM.NN., LXXX (1). pp. 6773.

PDF
atti_3_2002_67.pdf  Published Version Download (555kB) 
Abstract
In this note one studies some types of vector fields on a Riemmannian manifold $M$ endowed with a LeviCivita connection $\nabla$. For instance some types of closed torse forming, exterior concurrent vector fields, and quasi exterior concurrent vector fields. In addition exterior concurrents valued 1form are also discussed. Finally we state and prove the following proposition: Let X and X' be exterior concurrent vector fields with respective conformal scalar f and f'. Then F = X \land X' is a 2exterior concurrent vector valued 1form having $(f+f') (x^b \land x^b')$ as concurrence form.
Item Type:  Article 

Subjects:  M.U.S.  Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali > 2002 M.U.S.  Miscellanea > Atti Accademia Peloritana > Classe di Scienze Giuridiche, Economiche e Politiche > 2002 M.U.S.  Miscellanea > Atti Accademia Peloritana > Classe di Lettere, Filosofia e belle Arti > 2002 
Depositing User:  Dr PP C 
Date Deposited:  19 Sep 2012 09:26 
Last Modified:  20 Sep 2012 11:35 
URI:  http://cab.unime.it/mus/id/eprint/628 
Actions (login required)
View Item 