Messanae Universitas Studiorum

Sulle sezioni di un fascio riflessivo di rango 2 su $P^3$:
casi estremi per la prima sezione

Roggero, Margherita and Valabrega, Paolo (1995) Sulle sezioni di un fascio riflessivo di rango 2 su $P^3$:
casi estremi per la prima sezione.
Accademia Peloritana dei Pericolanti, Classe di Scienze FF. MM. NN., LXXIII. pp. 103-111.

[img]
Preview
PDF - Submitted Version
Download (1745Kb) | Preview

    Abstract

    If $F$ is a rank two normalized reflexive sheaf on $P^3$ with first chern class 0 or -1, it is possible to define the integers $ \alpha \ $ =smallest number such that $F(\alpha \ )$ has a non-vanishing section and $ \beta \ $ =smallest number such that $F( \beta \ )$ has a new sectiot, not multiple of one section of $F( \alpha \ )$. Then it is well known that the zero-locus of a non-vanishing general section of $F(t)$ gives rise to a locally Choen-Macaulay, almost everywhere complete intersection curve if and only if either $t= \alpha \ or \t \ge \ \beta \ $. Moreover in $[H_2]$ it is proved that $\alpha\le\sqrt{3c_2+1+3c_1 / 4}-1-{c_1 / 2}$ (the $c_i$'s being the chern classes of $F$).
    In this paper it is shown that, ig $ \alpha\ $ is as high as possible, i.e. $ \alpha\ $ =integral part of $\alpha\le\sqrt{3c_2+1+3c_1 / 4}-1-{c_1 / 2}$ , then alpha=beta and moreover $h^2$ F(alpha)=0

    Item Type: Article
    Subjects: M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali > 1995
    M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Medico-Biologiche > 1995
    M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Giuridiche, Economiche e Politiche > 1995
    M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Lettere, Filosofia e belle Arti > 1995
    Divisions: UNSPECIFIED
    Depositing User: Dr A F
    Date Deposited: 19 Sep 2012 09:53
    Last Modified: 19 Jun 2013 11:10
    URI: http://cab.unime.it/mus/id/eprint/629

    Actions (login required)

    View Item