Cangemi, Maria Rosa and Restuccia, Gaetana (1993) Algebre simmetriche lisce. Accademia Peloritana dei Pericolanti, Classe di Scienze FF. MM. NN., LXXI. pp. 343-351.
PDF
atti_3_1993_343.pdf - Submitted Version Restricted to users from Unime Download (1MB) | Request a copy |
Abstract
Let $R$ be a k-algebra, where k is a field of caracteristic zero, with the universal finite module of differentials $D_k(R)$. Let R be a finitely generated R-module, we prove that if R is a Jacobson's ring and the module of k-derivations of the symmetric algebra $Sym_R(E)$ is projective, then $Sym_R(E)$ is a smooth algebra.
Item Type: | Article |
---|---|
Subjects: | M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Fisiche, Matematiche e Naturali > 1993 M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Medico-Biologiche > 1993 M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Scienze Giuridiche, Economiche e Politiche > 1993 M.U.S. - Miscellanea > Atti Accademia Peloritana > Classe di Lettere Filosofia e belle Arti > 1993 |
Depositing User: | Dr A F |
Date Deposited: | 21 Sep 2012 09:48 |
Last Modified: | 21 Sep 2012 09:49 |
URI: | http://cab.unime.it/mus/id/eprint/746 |
Actions (login required)
View Item |