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ON SETS OF CLASS [1,q+1,2q+1]2 IN PG(3,q)

STEFANO INNAMORATI a AND FULVIO ZUANNI a∗

ABSTRACT. In this note we prove that a set of class [1,q+1,2q+1]2 in PG(3,q) is either
a line, or an ovoid, or a (q2 +q+1)-set of type (1,q+1,2q+1)2 or a (q+1)2-set of type
(q+1,2q+1)2, or a unique, up to projective equivalence, sporadic 19-set of type (1,4,7)
in PG(3,3).

1. Introduction and motivation

A fundamental question in finite geometry is to recognize geometric substructures from
combinatorial properties. Let PG(3,q) be the projective space of dimension three and order
q = ph a prime power. Let K denote a k-set, i.e. a set of k points, of PG(3,q). A plane
(line) of PG(3,q) meeting K in exactly j points is simply called a j-plane ( j-line) of K.
A 0-plane (0-line) is also said an external plane (external line). For each integer j such
that 0 ≤ j ≤ q2 +q+1 (0 ≤ j ≤ q+1), let us denote by t j = t j(K) the number of j-planes
( j-lines) of K. The numbers t j are called the characters of K with respect to the planes
(lines). Let m1, m2, ..., mh be h integers such that 0 ≤ m1 < m2 < ... < mh ≤ q2 + q+ 1
(0 ≤ m1 < m2 < ... < mh ≤ q+1). A set K is said to be of class [m1,m2, ...,mh]2 (of class
[m1,m2, ...,mh]1) if t j ̸= 0 only if j ∈ {m1,m2, ...,mh}. Moreover K is said to be of type
(m1,m2, ...,mh)2 (of type (m1,m2, ...,mh)1) if t j ̸= 0 if and only if j ∈ {m1,m2, ...,mh}. The
integers m1, m2, ..., mh are called intersection numbers with respect to the planes (lines). Of
particular interest are sets with few intersection numbers (see Coykendall and Dover 2001).
The most studied sets are those ones with only two intersection numbers and not much
seems to be known in the general case of sets with more than two (see Thas 1973; Hirschfeld
1985; Tallini Scafati 1985). Recently Napolitano (2014) and Innamorati and Zuanni (2015,
2017) studied some sets of class [l,m,n]2 in affine spaces and in projective spaces and they
showed how to recognize specific configurations only by using the intersection numbers.

Now, let P be a point of a k-set K and τ a plane passing through P. If any line in τ

through P is either a 1-line or a (q+1)-line of K, then Biondi and Melone (1986) say that
the plane τ is tangent to K in the point P. Moreover, if for any line l in PG(3,q) the number
of tangent planes to K through l belongs to the set {0,1,2,q+ 1}, they say that K is of
Plücker class two. Then Biondi and Melone proved the following
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Result 1.1. Let K be a set of class [1,q+1,2q+1]2 of PG(3,q). If K is of Plücker class
two, then

• K is a line;
• K is an ovoid;
• K is of type (1,q+1,2q+1)2; furthermore, if K contains at least two lines, then K

is a cone projecting an oval in a plane π from a point V not in π;
• K is of type (q+1,2q+1)2;

furthermore, if K contains at least five lines and there is at least one tangent
plane to K, then K is the pointset of q+1 pairwise skew lines, which either have
one or two trasversals, or form a hyperbolic quadric.

Durante et al. (2010) proved the following

Result 1.2. Let K be a set of class [1,q+1,2q+1]2 of PG(3,q). If K contains at least two
lines, then

• K is a cone projecting an oval in a plane π from a point V not in π; hence if q is
odd, then K is a quadratic cone;

• K is a (q+1)2-set of type (q+1,2q+1)2.

In the groove traced by the previous results, we prove the following

Theorem 1.3. If K is a set of class [1,q+1,2q+1]2 of PG(3,q), then

• K is a line;
• K is an ovoid;
• K is a (q2 +q+1)-set of type (1,q+1,2q+1)2;
• K is a (q+1)2-set of type (q+1,2q+1)2;
• q = 3 and K is a 19-set of type (1,4,7)2; furthermore, up to projective equivalence,

there is a unique 19-set of type (1,4,7)2 in PG(3,3).

2. The proof of the theorem

Let K be a k-set of class [1,q+ 1,2q+ 1]2 in PG(3,q). By counting in double way the
number of planes, the number of pairs (P,π) where P ∈ K and π is a plane through P, and
the number of pairs ((P,Q),π) where {P,Q} ⊂ K and π is a plane through P and Q, we get
the following equations on the integers ti = ti(K)⎧⎨⎩t1 + tq+1 + t2q+1 = q3 +q2 +q+1

t1 +(q+1)tq+1 +(2q+1)t2q+1 = k(q2 +q+1)
q(q+1)tq+1 +2q(2q+1)t2q+1 = k(k−1)(q+1)

or, equivalently,⎧⎨⎩2q2t1 = 2q5 +5q4 +(6−3k)q3 +(6−4k)q2 +(k−4)(k−1)q+(k−1)2

q2tq+1 =−2q4 +(2k−3)q3 +3(k−1)q2 − (k−3)(k−1)q− (k−1)2

2q2t2q+1 = (q+1)[q3 − (k−1)q2 − (k−1)q+(k−1)2]
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It is immediate to see that k ≡ 1 (mod q). If k = 1, then K is a point, so it is not a set of
class [1,q+1,2q+1]2. Putting k = aq+1 with a ≥ 1 we get⎧⎨⎩2t1 = (q+2−a)[(q+1)(2q−1)+2−a(q+1)]

tq+1 = 3q+(2q−a)[(a−1)q+(a−2)]
2t2q+1 = (q+1)(a−1)(a−q)

Being t2q+1 ≥ 0, we have that a = 1 or a ≥ q. If a = 1, then k = q+ 1, t1 = q2(q+ 1),
tq+1 = q+1, and t2q+1 = 0. So K is a line (see Thas 1973).

From now on, a≥ q. Being t1 ≥ 0, we get a≤ q+2 or a≥ 2q−1+2/(q+1), i.e. a≥ 2q
since 0 < 2/(q+1)< 1. If a ≥ 2q+1, then tq+1 ≤−(q−1)(2q+1)< 0, a contradiction.
Finally, we have that q ≤ a ≤ q+2 or a = 2q.

If a = q, then k = q2 +1, t1 = q2 +1, tq+1 = q3 +q, and t2q+1 = 0; so K is a (q2 +1)-set
of type (1,q+1)2, i.e. K is an ovoid, see (see Thas 1973).

If a = q + 1, then k = q2 + q + 1, t1 = q(q − 1)/2, tq+1 = q3 + q + 1, and t2q+1 =

q(q+1)/2; so K is a (q2 +q+1)-set of type (1,q+1,2q+1)2.
If a = q+ 2, then k = (q+ 1)2, t1 = 0, tq+1 = q3 − q, and t2q+1 = (q+ 1)2; so K is a

(q+1)2-set of type (q+1,2q+1)2.
Now, let us consider the case a = 2q. First, let us note that if q = 2, then q+2 = 2q. So

q ≥ 3. Being t1 = 1+q(q−3)/2 ≥ 1, let π be a 1-plane and let P the point of K on π . If
t1 ≥ 2, then let π ′ be another 1-plane and let r be the line π ∩π ′. Let us denote by ui the
number of i-planes through r with i ∈ {1,q+1,2q+1}. Counting the planes through r, and
the points of K by the planes through r we obtain

u1 +uq+1 +u2q+1 = q+1 (1)

(1− x)u1 +(q+1− x)uq+1 +(2q+1− x)u2q+1 = 2q2 +1− x (2)

with x = 0 if P /∈ r or x = 1 if P ∈ r. Being u1 ≥ 2, by (1) we have that u2q+1 ≤ q− 1.
By the following combination (2)−(q+1− x)(1) we get u2q+1 = q+ x+(u1 −2) ≥ q, a
contradiction. So t1 = 1 which implies q = 3. Being a = 2q = 6, we have k = 19, t4 = 9,
and t7 = 30. Hence, K is a 19-set of type (1,4,7)2.

3. The unique 19-set of type (1,4,7)2 in PG(3,3)

In this section K will ever be a 19-set of type (1,4,7)2 in PG(3,3). Let π be the unique
1-plane of K and let P be the unique point of K on π .

By vi(P) we denote the number of i-planes of K passing through P with i ∈ {1,4,7}. Of
course, it is v1(P) = 1.

Lemma 3.1. We have that v4(P) = 0 and v7(P) = 12.

Proof. Counting the pairs (Q,α) where Q is a point of K \{P} and α is a plane through
Q and P we obtain 3v4(P)+ 6v7(P) = (q+ 1)(k− 1) = 72. Being v4(P)+ v7(P) = 13−
v1(P) = 12, we get v4(P) = 0 and v7(P) = 12. □

If rh is an h-line of K, by τi(rh) we denote the number of i-planes passing through rh
with h ∈ {0,1,2,3,4} and i ∈ {1,4,7}.

Remark 3.2. If rh lyes on π , then h ∈ {0,1} and τ1(rh) = 1.
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Lemma 3.3. If rh lyes on π , then τ7(rh) = 2+h and τ4(rh) = 1−h.

Proof. Counting the points of K \π by the planes through rh different from π , we obtain
(4−h)τ4(rh)+ (7−h)τ7(rh) = 18. Being τ4(rh)+ τ7(rh) = 3, we get τ7(rh) = 2+h and
τ4(rh) = 1−h. □

Remark 3.4. If rh does not lye on π , then τ1(rh) = 0.

Lemma 3.5. If rh does not lye on π , then τ7(rh) = 1+h and τ4(rh) = 3−h. Furthermore,
h ≤ 3 and so K does not contain lines.

Proof. Counting the points of K by the planes passing through rh we obtain (4−h)τ4(rh)+
(7−h)τ7(rh) = 19−h. Being τ4(rh)+τ7(rh) = 4, we get τ7(rh) = 1+h and τ4(rh) = 3−h.
Finally, τ4(rh)≥ 0 implies h ≤ 3. □

Corollary 3.6. A 4-plane of K does not contain a 3-line of K.

Lemma 3.7. If we denote by wi(P) the number of i-lines of K passing through P with
i ∈ {1,2,3}, then w1(P) = 4, w2(P) = 0, and w3(P) = 9.

Proof. The four lines through P on the plane π are 1-lines of K. So if we denote by x
the number of 1-secant lines of K passing through P and not lying on π , then w1(P) =
4+ x. Counting the number of points Q ∈ K \ {P} by the lines through P, we obtain
w2(P)+2w3(P) = 18. Being w2(P)+w3(P) = 13−w1(P) = 9− x, we get w3(P) = 9+ x
and w2(P) = −2x. Finally, w2(P) ≥ 0 implies x = 0. So w1(P) = 4, w2(P) = 0, and
w3(P) = 9. □

Theorem 3.8. Up to projective equivalence, there is a unique 19-set K of type (1,4,7)2 in
PG(3,3).

Proof. Let us suppose that there exists a 19-set K of type (1,4,7)2 in PG(3,3). Here
we use homogeneous coordinates (x0,x,y,z) for the points of PG(3,3). U.t.p.e. (up to
projective equivalence), let π : x0 = 0 be the 1-plane of K and P = Z∞(0,0,0,1) be the
point of K on π . The line r0 : x0 = z = 0 is a line on π not through P. Hence, by (3.3)
τ4(r0) = 1 and τ7(r0) = 2. U.t.p.e., let α : z = 0 be the 4-plane through r0, β : z = 1
and γ : z = 2 be the two 7-planes through r0. By (3.6) the four points of α ∩K are the
vertices of a square. U.t.p.e., K ∩α = {(1,0,0,0),(1,1,0,0),(1,0,1,0),(1,1,1,0)}. By
(3.7) the nine lines ri j : x− ix0 = y− jx0 = 0 with i, j ∈ {0,1,2} are 3-lines. So the ten
points (1,0,2,z), (1,1,2,z), (1,2,2,z), (1,2,1,z), (1,2,0,z) with z ∈ {1,2} are in K. So
both on the plane β and on the plane γ there are other two points of K. Since the line
r11 : x− x0 = y− x0 = 0 is a 3-line of K, one and only one of the points (1,1,1,1) or
(1,1,1,2) is in K. U.t.p.e., let us suppose that (1,1,1,1) ∈ K and (1,1,1,2) /∈ K. If we
consider the plane δ : x+ y+ z = 0, then the five points (1,0,0,0), (1,2,0,1), (1,1,1,1),
(1,0,2,1), and (1,2,2,2) are in K ∩ δ . So δ is a 7-plane of K. The other two points on
δ ∩ γ are (1,1,0,2) and (1,0,1,2) necessarily. Since the lines r10 : x− x0 = y = 0 and
r01 : x = y− x0 = 0 are 3-lines of K, then (1,1,0,1) and (1,0,1,1) are not in K. Thus, the
7th of K ∩β is (1,0,0,1) necessarily.

Finally, if there exists a 19-set K of type (1,4,7)2 in PG(3,3), then, up to projective
equivalence, the set K must contain the following 19 points:
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(0,0,0,1), (1,0,0,0), (1,1,0,0), (1,0,1,0), (1,1,1,0), (1,0,2,1), (1,1,2,1), (1,2,2,1),
(1,2,1,1), (1,2,0,1), (1,0,2,2), (1,1,2,2), (1,2,2,2), (1,2,1,2), (1,2,0,2), (1,1,1,1),
(1,1,0,2), (1,0,1,2), (1,0,0,1).
Viceversa, by computer, we checked that the set containing those 19 points is of type
(1,4,7)2. □

3.1. A geometric description of the 19-set K. Let Σ be the pointset of PG(3,3). Let
π be the pointset of the plane x0 = 0. Let Q be the pointset of the hyperbolic quadric
xy+(x+y+ z+x0)x0 = 0. By computer we checked that K = (Σ\ (Q∪π))∪{(0,0,0,1)}.
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