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SYMMETRIC TRAVELING SALESMAN PROBLEM AND FLOWS
IN HYPERGRAPHS: NEW ALGORITHMIC POSSIBILITIES

TIRU S. ARTHANARI ∗

ABSTRACT. The traveling salesperson problem (TSP) is a very well-known NP-hard
combinatorial optimization problem. Many different integer programming formulations are
known for the TSP. Some of them are “compact”, in the sense of having a polynomially-
bounded number of variables and constraints. We focus on one compact formulation for the
symmetric TSP, known as the “multistage insertion” formulation [T. S. Arthanari, Discrete
Mathematics 306, 1474 (2006)], and show that its linear programming (LP) relaxation
can be viewed as a minimum-cost flow problem in a hypergraph. Using some ideas of R.
Cambini, G. Gallo and M. G. Scutellà [University of Pisa, TR-1/92 (1992)] on flows in
hypergraphs, we propose new algorithms to solve the LP relaxation. We also exploit the
Leontief structure of a certain subproblem, to provide additional algorithms for solving the
LP relaxation. Some bounds on the running time are also derived.

1. Introduction

Given a complete graph of n-vertices, finding a minimum cost n-tour (or tour for short)
that starts from the home city and visits every city once and returns back to the home city,
with the cost of traveling from city i to city j being same as that of traveling from city j to
city i, that is, ci j = c ji, is called the Symmetric Traveling Salesman Problem (STSP). This
is a typical, difficult combinatorial optimization problem, and has been extensively studied
(Lawler et al. 1985; Laporte 1992; Jünger et al. 1997; Applegate et al. 2006; Gutin and
Punnen 2007; Punnen 2007).

The standard formulation due to Dantzig et al. (1954) renders the asymmetric traveling
salesman problem (ATSP), where the cost of traveling from city i to city j can be different
from that of city j to city i, as a 0-1 integer program. Analogously the STSP can be
formulated as an integer programming problem (see section 2 for notations):
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A1-2 T. S. ARTHANARI

minimize ∑
e∈En

cexe (1)

subject to ∑
e∈δ (v)

xe = 2, ∀v ∈Vn, (2)

∑
e∈E(Kn[X ])

xe ≤ |X |−1, /0 ̸= X ⊂Vn, (3)

xe ∈ {0,1},∀e ∈ En. (4)

To arrive at this formulation, Dantzig, Fulkerson and Johnson reason that given any tour
the corresponding subgraph satisfies the degree constraints (Eq. 2). But subtours of any k
vertices also satisfy these constraints; so to eliminate subtours from consideration in the
model, we require that for any nonempty subset X of k-vertices (k < n), the number of edges
of the tour incident with this subset is strictly less than k. Constraints 3 ensure this, and so
they are called subtour elimination constraints. Dantzig, Fulkerson and Johnson also solved
a large size TSP to optimality by sequentially adding cutting planes (inequality constraints)
to separate the current non-integer solution from the feasible region of the current linear
programming problem. This work became seminal for the approaches that followed to solve
the STSP. Solving such an optimization problem efficiently is a theoretical challenge (Garey
and Johnson 1990).

Polyhedral combinatorics deals with the study of polytopes with the corner points
(vertices) corresponding to objects of interest like the tours (Korte and Vygen 2012). A
polyhedral approach, like the branch and cut, was used on the largest STSP problem solved
to date having 85900 cities using the Concorde code (Concorde TSP Solver 2018) developed
by Applegate et al. (2006).

A brief account of polyhedral analysis of different formulations of TSP is provided in
subsection 2.1. Naddef (2007) succinctly summarizes the comparative strengths of the
different models for STSP. Among all the known integer linear programming models, five
models emerge and attain the same value for their linear relaxations. These are: the subtour
elimination formulation of Dantzig, Fulkerson and Johnson, which has an exponentially
large number of constraints, Wong’s multicommodity flow formulation (Wong 1980),
Claus’s formulation (Claus 1984), the multistage insertion formulation (MI-formulation)
(Arthanari 1982), and Carr’s cycle shrink formulation (Carr 1995). The multistage-insertion
is inspired by dynamic programming recursion - building up a tour step by step. The
cycle shrink does the opposite: going from a tour to a node. Not surprisingly, these two
formulations are equivalent (see the proof in Arthanari and Usha 2001).

A proof that Wong’s (1980) and Claus’s (1984) formulations give the same bound as DFJ
can be found in (Langevin et al. 1990). There are formulations that give even stronger lower
bounds (see Gouveia and Voß 1995; Öncan et al. 2009; Godinho et al. 2014). But they were
found to be computationally not efficient (see section 2.1). However, MI-formulation has
additional polyhedral properties, which are not shared by other formulations. The integer
hull of MI-formulation is the Pedigree polytope. A pedigree is defined as the sequence,
(e4, . . . ,en) of n−3 edges selected for inserting nodes 4, . . . ,n respectively. In other words,
any feasible integer solution to MI-formulation corresponds to a pedigree and vice versa.
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The convex set, whose vertices are the 0−1 vectors representing pedigrees, is called the
pedigree polytope. With the view to understand better the integer hull of MI-formulation,
Pedigree polytope and its properties are studied by Arthanari (2005, 2006, 2008) and
Haerian Ardekani and Arthanari (2008).

Haerian Ardekani (2011) as part of her doctoral thesis has compared different formula-
tions of the symmetric traveling salesman problem, including the standard formulation or
DFJ formulation with respect to (i) the linear programming (LP) relaxation of the formula-
tion and integrality gap, (ii) number of simplex iterations and (iii) CPU time used to find an
optimal continuous solution. It turns out that MI-relaxation has emerged more often than
not as the winner as far as the gap is concerned. Also it has shown superiority among those
formulations with similar gap by needing fewer number of simplex iterations. Gubb (2003)
compared 19 formulations of STSP that model the problem from different perspectives,
namely, flows, insertions and subtours (some of these are in the list of references: Miller
et al. 1960; Gavish and Graves 1978; Fox et al. 1980; Wong 1980; Claus 1984; Sherali
and Driscoll 2002; Sarin et al. 2005). He concludes that even among those formulations
that are similar in polytope-wise implications, they vary in computational efficiency. MI-
formulation stands out in this experimental comparison as well. Unfortunately, in both
(Haerian Ardekani 2011) and (Gubb 2003) the sizes of the instances from TSPLIB (Reinelt
1991) considered are less than 320. The reason for this limitation arises primarily from the
capacity of the commercial LP solver software used. MI-formulation has n(n−1)

2 +(n−3)
constraints and τn = ∑

n
k=4

(k−1)(k−2)
2 variables. In order to solve larger size problems one

needs to abandon using general purpose LP algorithms to solve the LP instances that are
sparse, with 0,±1-matrices, with the non-zero elements occurring in specific positions that
can be given by a formula. In this paper we consider the constraint matrix of MI-formulation
for further clue to devise special purpose LP algorithms to exploit completely the structure
of the problem matrix.

Section 2 introduces the notations and preliminaries required. Brief review of the
literature on comparisons of different formulations of TSP is given in subsection 2.1.
Subsection 2.2 introduces concepts from flows on hypergraphs, followed by a brief overview
of the Lagrangian relaxation approach and its variants in solving integer programming
problems in subsection 2.3. Subsection 2.4 introduces Leoitief substitution flow problems.
Subsections 2.5 and 2.6 introduce MI-formulation and pedigree polytope respectively.
Section 3 discusses the Leontief Substitution flow problem (LS f P) and the value iteration
algorithm of Jeroslow et al. (1992) and the new observations made on MI-relaxation
problem that relate a sub problem of MI-relaxation to LS f P. Section 3.1 applies Lagrangian
relaxation to MI-formulation using the results from previous sections. Section 4 shows
how MI-relaxation problem can be viewed as a minimum cost hypergraph flow problem
and specializes the hypergraph simplex method of Cambini et al. (1992) for solving MI-
relaxation problem. Section 5 gives an account of the computational experiments planned to
evaluate the new algorithms suggested in the paper. The last section is devoted to summarize
the findings and to conclude the paper.
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A1-4 T. S. ARTHANARI

2. Notations and preliminaries

Let R denote the set of reals. Similarly Q, Z, N denote the rationals, integers and natural
numbers respectively, and B stands for the binary set of {0, 1}. Let R+ denote the set of
non negative reals. Similarly the subscript + is understood with rationals. Let Rd denote the
set of d -tuples of reals. Similarly the superscript d is understood with rationals, etc.

Let Kn = (Vn,En) be the complete graph of n≥ 4 vertices, where Vn = {1, . . . ,n} is the
set of vertices labeled in some order, and En = {e = (i, j) | i, j ∈ Vn, i < j} is the set of
edges. We denote the elements of En by e where e = (i, j). Notice that, unlike the usual
practice, an edge is assumed to be written with i < j. Let pk denote |Ek|= k(k−1)/2. Let
the elements of En be labeled as follows: (i, j) ∈ En, has the label, li j = p j−1 + i.

This means, edges (1,2),(1,3),(2,3) ∈ E3 are labeled, 1,2, and 3 respectively. Once the
elements in En−1 are labeled then the elements of En \En−1 are labeled in increasing order
of the first coordinate, namely i. Let τn = ∑

n
k=4 pk−1.

Assume that the edges in En are ordered in increasing order of the edge labels. For a
subset F ⊂ En we write the characteristic vector of F by xF ∈ Rpn where

xF(e) =
{︃

1 if e ∈ F ,
0 otherwise.

For a subset S⊂Vn we write

E(S) = {(i, j) | (i, j) ∈ E, i, j ∈ S}.

Given u ∈ Rpn , F ⊂ En ,we define,

u(F) = ∑
e∈F

u(e).

For any subset S of vertices of Vn, let δ (S) denote the set of edges in En with one end in S
and the other in Sc =Vn \S. For S = {i} , we write δ ({i}) = δ (i).

A subset H of En is called a Hamiltonian cycle in Kn if it is the edge set of a simple
cycle in Kn, of length n. We also call such a Hamiltonian cycle an n− tour in Kn. At
times we represent H by the vector (1i2 . . . in1) where (i2 . . . in) is a permutation of (2 . . .n),
corresponding to H. Let Hn denotes the set of all Hamiltonian cycles ( or n− tours ) in Kn.

Let E be a finite set, called the ground set. Let F denote a collection of subsets of E.
Let c : F → R denote a cost function. In an abstract way, a combinatorial optimization
problem (COP) can be posed as: Find a X ∈F that minimizes c(X).

Let {0,1}|E| denote the set of all 0−1 vectors indexed by E. Since any subset of E can
be given by a 0−1 vector, called the incidence vector, the collection F can be equivalently
given by a subset F of {0,1}|E|. And the convex hull of F , denoted by conv(F), is a
0− 1 polytope. And the set of vertices of the polytope can be seen as F . We specify a
combinatorial optimization problem by giving (E,F,c). For example, finding a Hamiltonian
cycle that minimizes a linear objective function over the set of all Hamiltonian cycles ( or
n− tours ) in Kn is a COP. This problem is also known as the symmetric traveling salesman
problem (STSP).

Here the ground set E is the set of edges in a complete graph on n vertices, En. F is
the set of incidence vectors of H ∈Hn. And we are given c ∈ Rpn . Let Qn denote the
polytope conv(F). STSP is a typical COP which is known to be NP-hard. In polyhedral
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combinatorics, Qn is studied while solving the STSP (see Lawler et al. 1985; Jünger et al.
1997)). Next we take a quick survey of comparison of various formulations of TSP, based
on computational and polyhedral perspectives.

2.1. A brief review of comparisons of different formulations of STSP. Formulations of
any integer liner programming problem, can be compared by using polyhedral information.
Suppose two different formulations F1 and F2 are stated in the same space of variables
x ∈ Rp and the problem is to find an optimal integer solution that minimizes an objective
function. Let P(F1) and P(F2) be the polyhedra associated with these formulations. If
P(F1)⊂ P(F2), then F1 is a better formulation than F2 since the lower bound obtained by
solving the LP relaxation of F1 is as good as or better than the one obtained by solving the
LP relaxation of F2. In case F3 is a formulation having the polyhedron

P(F3) = {(x,y) ∈ Rp×Rq : Ax+By≤ b},
where A,B and b have same number of rows, we can use the projection of P(F3) into the
subspace of x variables given by

T P(F3) = {x ∈ Rp : ∃ y ∈ Rq ∋ (x,y) ∈ P(F3)}
to compare it with the formulation F1. That is, if T P(F3) ⊂ P(F1), then F3 is a better
formulation.

Such polyhedral analyses have been used in the literature to compare a number of existing
formulations (Wong 1980; Padberg and Sung 1991; Gouveia and Voß 1995; Arthanari and
Usha 2001; Orman and Williams 2007; Öncan et al. 2009; Roberti and Toth 2012; Godinho
et al. 2014). In addition to their comparative study using polytope analysis, Öncan et al.
(2009) report some results on the empirical quality of the LP bounds obtained with some
of the formulations. They tested these formulations on 10 ATSP instances with number of
cities ranging from 30−70, obtained from TSPLIB (Reinelt 1991). They use the relative
deviations from the optimal tour lengths, computed as 100(z∗IP− z∗LP)/z∗IP, where z∗IP is the
length of an optimal tour and z∗LP is the lower bound obtained by solving the LP relaxation
of the models. In their study, the formulations by Sherali et al. (2006) and Claus (1984)
provide the best bounds. These comparisons are primarily for ATSP formulations.

Gubb (2003) considers the polynomial formulations discussed by Öncan et al. (2009)
and three new symmetric formulations and presents computational comparisons on these
formulations, including MI-formulation. Randomly generated Euclidean TSP instances
with n = 100 were tested along with 10 instances, with number of cities ranging from
30- 70 from TSPLIB (Reinelt 1991). These results were compared with the implications
of polyhedral analysis, and the results show that polyhedral analysis by itself does not
necessarily show which formulations are faster in practice. Polyhedral analysis gives one
aspect, the strength of the LP relaxation, without any insight on the time taken to solve the
LP relaxation. Practical comparisons need both, and to link the relationship between them
to fully solving for an optimal integral solution.

Gubb concludes based on his computational results that the best polynomial STSP
formulation is Multistage Insertion formulation compared to the formulations studied by
Öncan et al. (2009). In general, MI-formulation fully solved the instances and is the fastest;
as it is not only as strong as DFJ formulation, but also has a small number of variables
compared to other polynomial formulations that are equivalent to DFJ-formulation.
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Haerian Ardekani (2011) compares the performance of LP relaxations of various TSP
formulations with that of MI-formulation. Some STSP and ATSP instances from TSPLIB,
and some diamond instances by Papadimitriou and Steiglitz (1977) are used for this purpose.
MI-relaxation outperforms other formulations either in terms of solution time and number
of iterations, or the quality of the solutions, on STSP instances from TSPLIB . The solution
times and number of Cplex iterations for the MI-formulation are significantly lower than
those of other formulations with the same LP relaxation value. Despite their lower solution
times, the gap with the optimal solution given by the formulations of Fox et al. (1980)
and Miller et al. (1960) are considerably higher than that of MI-formulation. The MI-
formulation performs better than those of Carr (1996), Claus (1984), and Flood (1956) in
terms of solution time and number of iterations on TSP instances from TSPLIB. Ardekani
notes that for the ATSP instances reported by Gouveia and Pires (1999), the gap with the
optimal solution for the multi commodity flow (MCF) formulation dominates that of the
MI-formulation; however, solution times required by this formulation are notably greater
than those of the MI-formulation.

Papadimitriou and Steiglitz designed a series of STSP instances to show how some
local search algorithms, in particular the k–interchange heuristics, get stuck in local optima
and fail to find the optimum. All of these instances have a single global optimum but
exponentially many second best local optima that are all appreciably inferior to the global
optimum. The instances are made up of some structures called diamonds, and are indexed
by the number of diamonds. Ardekani observes that LP relaxation of MI-formulation found
the integer solution to all the STSP diamond instances. MI-formulation also outperforms
other formulations in terms of LP relaxation value or solution time. Some of the tables from
(Haerian Ardekani 2011) are reproduced in Appendix 6.

Roberti and Toth (2012) show that the branch and cut code FLT by Fischetti et al. (2003)
and the Concorde code (Concorde TSP Solver 2018) by Applegate et al. (2006) were the
only two exact methods based on the branch and cut polyhedral approach, that are able
to solve, within the imposed time limit, all the 35 instances from TSBLIB and some real
world instances to optimality, and are clearly better performing than the other five branch
and bound methods considered by them. Largest problem size solved by them is 443.
Also, they conclude that Concorde is the only one code available to solve very large size
instances. Concorde and FLT work in the space of variables used in DFJ formulation. And
such a cutting plane approach needs to ensure the algorithm is able to check whether any
subtour elimination constraint is violated and it must be able to solve the LP relaxation
efficiently as well. The facet (and adjacency) structure of the tour polytope contained in the
subtour elimination polytope plays an important role in the computational difficulty faced
by these cutting plane methods. Hence, a new beginning is possible if we choose, instead of
working with tours, to work with pedigrees. MI-polytope contains the pedigree polytope
and pedigree polytope has nicer adjacency structure (see subsection 2.11 on Pedigrees).

The main aim of this paper is to provide new algorithmic approaches that might apprecia-
bly increase the size of problems solved using MI-relaxation. This is the first step towards
taking a different polyhedral approach based on Pedigree polytope to solve STSP problem.
So we are not at this stage competing with Concorde, but suggest methods based on new
results on MI-formulation to solve larger instances of MI-relaxation problem. That is, first
step in using a polytope that contains Pedigree polytope, to solve STSP.
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Next three subsections give a preliminary account of the concepts and tools used to
derive new results on MI-relaxation.

2.2. Hypergraph and flows. Here we state some of the definitions and concepts from
(Cambini et al. 1992) and related works.

Definition 2.1. A directed hypergraph is a pair H = (V ,E ), where V = {v1,v2, . . . ,vn}
is the set of vertices, and E = {e1,e2, . . . ,en} is the set of hyperarcs. A hyperarc e is a pair
(Te,he), where Te ⊂ V is the tail of e and he ∈ V \Te is its head. A hyperarc that is headless,
(Te, /0), is called a sink and a tailless hyperarc, ( /0,he), is called a source.

Given a hypergraph H = (V ,E ), a positive real multiplier µv(e) associated with each
v ∈ Te, a real demand vector b associated with V , and a nonnegative capacity vector w, a
flow in H is a function f : E → R which satisfies:

∑
e∋v=he

f (e)− ∑
v∈Te

µv(e) f (e) = b(v), ∀v ∈ V (conservation), (5)

0≤ fe, ∀e ∈ E (feasibility), (6)

fe ≤ w(e), ∀e ∈ E ( and capacity). (7)

Problem 2.1. [Minimum cost hypergraph flow problem] Let c(e) be the cost associated with
the hyperarc e,∀e ∈ E . Find f ∗ such that ∑e∈E c(e) f ∗(e) is a minimum over all f satisfying
the flow constraints 5, 6, and 7.

Notice that this problem generalizes not only the minimum cost flow problem in ordinary
networks, but also the minimum cost generalized flow problem.

A directed path Pst from s to t in H is a sequence Pst =(v1 = s,e1,v2,e2, . . . ,eq,vq+1 = t),
where s ∈ Te1 , heq = t, and vi ∈ Tei ∩hei−1 for i = 2, . . . ,q.

If s = t, then Pst , is a directed cycle. When no directed cycle exists, then H is called
a cycle-free hypergraph. A directed hyperpath, ΠSt from the source set S to the sink t in
H is a minimal cycle-free sub-hypergraph containing both the nodes in S and node t, and
such that each node, with the exception of the nodes in S has exactly one entering hyperarc.
A hyperarc e′ is said to be a permutation of a hyperarc e if Te ∪{he} = Te′ ∪{he′}. A
hypergraph H ′ is a permutation of a hypergraph H if its hyperarcs are permutations of the
hyperarcs of H .

A directed hypertree with root set R, and a set of hyperarcs, ET , called tree arcs, is a
hypergraph TR = (R∪N,ET ) such that:

(1) TR has no isolated vertices, and does not contain any directed cycle;
(2) R∩N = /0 ;
(3) Each node ν ∈ N has exactly one entering hyperarc; and
(4) No hyperarc has a vertex of R as its head.

We say that TR is a directed hypertree rooted at R and N is called the set of non-root vertices.
Any non-root vertex not contained in the tail of any tree arc is called a leaf. Any permutation
of a directed hypertree rooted at R yields an undirected hypertree rooted at R. It can be
shown that TR is a directed hypertree rooted at R if and only if

• TR has no isolated vertices,
• R∩N = /0 and |N|= |ET |= q,
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• an ordering (v1,v2, ...,vq) and (e1,e2, ...,eq) exists for the elements of N such that:
he j = v j, and
• R∪{v1,v2, . . . ,v j−1} ⊇ Te j,∀e j ∈ ET .

2.3. Lagrangian relaxation and variants. This section briefly collects relevant results
and concepts from Lagrangian relaxation approach to finding lower bounds for difficult
combinatorial problems. Lagrangian relaxation approach, has found applications in several
different areas of practical problems of scheduling (mixed integer and integer programming
formulations of the problems are relaxed using this approach). Guignard (2003) gives many
examples of this nature explaining various new developments and practical implementation
tips.

The crucial among the research on Lagrangian relaxation for combinatorial optimization
problems were the seminal papers for TSP by Held and Karp (1970, 1971). Firstly they
showed the Lagrangian relaxation based on 1-tree for TSP gives the same bound as the
LP relaxation of the standard formulation of TSP. Subsequently Held and Karp introduced
the subgradient optimization to solve Lagrangian Dual. Computational experiments with
subgradient optimization are known to be successful. Important in Held and Karp’s use
of Lagrangian relaxation is the creative identification of the sub problem of solving 1-tree
minimization, which breaks down to solving a minimum spanning tree problem, that can
be efficiently solved. In addition, the lower bound obtained (by solving LD) using 1-tree
relaxation, is a tight lower bound for TSP, which goes by the name HK-bound (Valenzuela
and Jones 1997). For solving large-scale convex optimization problems and for providing
lower bounds on the optimal value of discrete optimization problems, researchers have
effectively used Lagrangian relaxation and duality results. A key approach in providing
efficient computational means to obtain near-optimal dual solutions and bounds on the
optimal value of the original problem, since the work of Held and Karp (1971), has been
subgradient optimization or methods based on subgradients. Geoffrion’s paper (Geoffrion
1974) is an early work on Lagrangian relaxation and its use in 0−1 programming problems
(several other references can be found in Guignard 2003). But computational complexity
of subgradient optimization is not known to be a polynomial; however, Bertsimas and
Orlin (1994) showed the existence of fast polynomial algorithms for solving LD of LP
problems, in some structured LP instances guaranteeing solution to the primal problem
as well. Theoretically, their method is significantly faster than interior point methods and
ellipsoid like methods directly applied to the problem.

Next we give the definitions and results for use in later parts of the paper. Let P be
the problem min{cx | Ax≤ b,Dx≤ d,x≥ 0,x ∈X }. Let F(P) denote the set of feasible
solutions to a given problem P. Let F∗(P) be the set of optimal solutions to P. Let z(P) be
the optimal value of the problem P. Usually X imposes some integrality restrictions on the
solutions of P.

Definition 2.2. A Lagrangian relaxation of (P) is either

min
x
{cx+λ (Ax−b) | Dx≤ d,x ∈X }

or

min
x
{cx+λ (Dx−d) | Ax≤ b,x ∈X }
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depending on which of the set of constraints is relaxed using non negative λ , called
Lagrangian multipliers.

To fix ideas, we generally relax those constraints that make the resulting Lagrangian
problem easy to solve, we call the remaining constraints, kept constraints. Sometimes,
both sets when relaxed may result in relatively easier Lagrangian problems. However, both
relaxations provide lower bounds on the optimal value of P, z(P). Let us assume that Ax≤ b
are relaxed unless otherwise specified.

The problem of finding supremum of such lower bounds leads us to Lagrangian Dual
(LD) problem. Let us call LRλ Lagrangian relaxation problem under consideration.

Definition 2.3. The LD problem

z(LD) = max
λ≥0

z(LRλ )

is called the Lagrangian Dual of P, relative to the set of constraints relaxed, Ax≤ b.

Let x(λ ) denote an optimal solution of LRλ for some λ ≥ 0. If x(λ ) is feasible for P,
then cx(λ )+λ (Ax(λ )−b)≤ z(P)≤ cx(λ ). If in addition λ (Ax(λ )−b) = 0 then x(λ ) is
an optimal solution to P, as well, i.e., z(P) = cx(λ ). However, if instead of Ax≤ b, we had
Ax = b, set of equality restrictions, then λ is not required to be nonnegative in Lagrangian
problem. In that case if, x(λ ) is optimal for Lagrangian problem and is feasible for P then it
is optimal for P as well, z(P) = cx(λ ).

Lagrangian relaxation bound is never worse than the LP bound. However, if conv{x ∈
X | Dx≤ d}= {x | Dx≤ d}, then z(LP) = z(LD)≤ z(P). This is an important result as,
we don’t hope to improve the bound if the relaxed problem has integral extreme points. So
the reason we relax them emanates from the fact that solving the LP is hard either due to the
number of constraints (exponentially many) or basis size (too large for the solver). In such
cases solving the LD becomes an alternative approach to calculate the LP bound. In general,
Lagrangian solutions, which are feasible integral for the kept constraints may violate one or
more of the relaxed constraints. In such a situation, Lagrangian solutions could be used as
input for some heuristics that achieve feasibility for the problem P. Barahona and Anbil
(2000) give an averaging method to recover feasible solutions to the primal problem from
the solutions to Lagrangian problems.

Suppose C = conv{x ∈X | Dx≤ d} is a polytope, then C has finitely many extreme
points, xs,s ∈ S, such that

z(λ ) = min{cx+λ (Ax−b) | Dx≤ d,x ∈X }= min
s∈S
{cxs +λ (Axs−b)}.

z(λ ) is a piecewise linear concave function, so LD seeks a maximum of a concave function,
maxz(λ ), that is not differentiable everywhere. At any breakpoint λ 0 of z(λ ), we have
subgradients y ∋

z(λ )− z(λ 0)≤ ⟨y,(λ −λ
0)⟩,

where ⟨y,(λ −λ 0)⟩= ∑i yi(λi−λ 0).
The set of all subgradients of a concave function z(λ ) at a point (λ 0) is called the

subdifferential of the function z at the point λ 0 and is denoted by ∂ z(λ 0). From convex
analysis we know the following facts, which we state without proofs:
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Lemma 2.1. The subdifferential ∂ z(λ 0) is a nonempty, closed, convex and bounded set.
And if ∂ z(λ 0) is a a singleton set then that is the gradient of z(λ ) at λ 0.

Lemma 2.2. If z(λ ) is not differentiable at λ k, then yk = (Axk− b)T is a subgradient of
z(λ ) at λ k. yk is orthogonal to {λ | cxk +λ (Axk−b) = ηk} where ηk = z(λ k), the optimal
value for Lagrangian problem corresponding to λ k.

To solve LD, Held and Karp used subgradient optimization, in which iteratively LRλ

problems are solved for a sequence of λk, choosing the next λk+1 moving a step along a
subgradient of z(λ ) at λk. The step size is an important issue for practical convergence
of the subgradient optimization method, though theoretically Poljak (1967, 1969) has
shown that given ti ∈ R, i ∈ N ∋ ∑

∞
i=1 ti = ∞ and limi→∞ ti → 0; and λi+1 = tiλi, we have

limλi→∞ z(LRλi) = z(LD) = maxλ≥0 z(LRλ ). The choice

λk+1 = λk +
sk εk(η

∗−ηk)

||sk||2

where sk is the subgradient of z(λ ) at λ k;εk ∈ (0,2), and η∗ is an estimate of the optimal
value of LD, was suggested by Held and Karp (1971). Other researchers, as Reinelt (1994)
and Valenzuela and Jones (1997), have given alternative step size choices. Subgradient
methods use different step-size rules to update Lagrangian multipliers to ensure convergence.
For solving nondifferentiable problems Poljak (1969) initiated such studies on their conver-
gence properties; under various step-size rules convergence rates have been established by
subsequent researchers.

Nedić and Ozdaglar (2009) report on recent great successes of subgradient methods in
networking applications. They study methods for generating approximate primal solutions as
a byproduct of subgradient methods applied to LD; they also provide theoretical bounds on
the approximation. Recently, Lorena and Narciso (2002) and Zamani and Lau (2010) have
used surrogate information and learning capability respectively in Lagrangian relaxation
to outperform Held and Karp’s subgradient approach for solving LD. Using step size
depending on the previous iterations, with the capacity of expansion or contraction of the
step size Zamani and Lau solve Euclidean TSP instances from TSPLIB (Reinelt 1991) and
claim that the procedure was very effective.

To solve LD, in addition to subgradient methods and its variations, there are other
approaches like the analytic centre cutting-plane method, Volume algorithm, and Bundle
method (Guignard 2003; Lemaréchal 2003). As cited earlier, Barahona and Anbil (2000)
give an averaging method called volume algorithm to recover feasible solutions to the primal
problem from the solutions to Lagrangian problems.

2.4. Leontief substitution flow problems. We first state some definitions from Veinott Jr.
(1968), the classical work on Leontief matrices. Consider A ∈ Rm×n,b ∈ Rm and x ∈ Rn.

Definition 2.4 (trivial rows). The ith row (column) of a matrix A is called trivial if for every
column vector x≥ 0 for which Ax≥ 0, the ith component of Ax (x) is zero; otherwise the
ith row (column) is called nontrivial.

Definition 2.5 (pre-Leontief, Leontief matrices). A matrix A is called pre-Leontief if each
column has at most one positive element. A matrix is called Leontief if each column has
exactly one positive element and its rows are nontrivial.
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Definition 2.6 (pre-Leontief, Leontief Substitution Systems). The system Ax = b,x ≥ 0
with b ≥ 0 is called pre-Leontief or Leontief substitution system according as the given
matrix is pre-Leontief or Leontief.

Remarks:
(1) So the incidence matrix of a hypergraph is pre-Leontief.
(2) The hypergraph flow problem is a pre-Leontief substitution system in case the

demand vector b is nonnegative. If in addition the rows are nontrivial, we have a
corresponding Leontief substitution system.

(3) Conversely it is easy to see that given a pre-Leontief system, we can define a
corresponding hypergraph flow problem as defined in subsection 2.2. (Jeroslow
et al. 1992, Lemma 1.1).

(4) The term degenerate hyperarc is used by Jeroslow et al. (1992) if x(e) = 0 corre-
sponding to a hyperarc e in every basic feasible solution to the problem. (Trivial
column as in Definition 2.4.)

Definition 2.7 (Leontief substitution flow problem (Jeroslow et al. 1992)). Given C ∈
R|E |, and a Leontief matrix A, we call the minimum cost hypergraph flow problem given
by minimize {C f | A f = b, f ≥ 0} a Leontief substitution flow problem, in case b≥ 0.

Definition 2.8. (Jeroslow et al. 1992). Consider a hypergraph H . Let v1,el ,v2,e2,
. . . , ek,vk+1 be a directed cycle where vk+1 = v1 and ei = (Ti,vi+1), and vi−1 ∈ Ti, i = 1, ...,k.
The gain of this directed cycle is defined by

1/Π
k
i=1µvi(ei).

We call a Leontief flow problem defined on a hypergraph H , gainfree if the gain of every
directed cycle in H is ≤ 1.

Lemma 2.3. If the incidence matrix of a hypergraph H is integral then a Leontief flow
problem defined on the hypergraph H , is gainfree.

Proof: Proof follows from the definition of gain.

Integrality of the basic feasible solutions to Leontief substitution flow problems is known
from Veinott’s classical result:

Theorem 2.1. (Veinott Jr. 1968). Let Ax = b, x≥ 0, be a given system. If A is an integral
Leontief matrix, the following are equivalent:

(1) B−1 is integral for every B ∈B∗,
(2) det(B) = 1 for every B ∈B∗,
(3) The extreme points of F(b) are integral for every nonnegative integral b,

where (a) F(b) = {x | Ax = b,x≥ 0}, denotes the solution set of the given system,(b) for a
pre-Leontief matrix A, let B be the set of all square full submatrices of A having pre-Leontief
transpose and (c) B∗ is the set of all Leontief matrices contained in B (for a proof see
Veinott Jr. 1968, p. 17).

From the definition of unimodular matrices, we know that a unimodular matrix B is a
square integer matrix with determinant +1 or -1. And we know that a matrix A is totally
unimodular if every square non-singular submatrix is unimodular, i.e., every subdeterminant
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of A is either +1,−1, or 0. So if A is a totally unimodular matrix then ai j = 0, or ±1.
So pre-Leontief matrices do not satisfy this requirement in general. However, we can
understand the implication of Veinott’s result better by using the definition of totally dual
integrality (TDI) of linear programming problems.

Definition 2.9 (Totally Dual Integral (Edmonds and Giles 1977)). Given an integral A and
rational b the LP min{cx | Ax = b,x≥ 0} is totally dual integral (TDI) if the dual problem
has an integral optimal solution for every integer vector c for which it has an optimal
solution.

Jeroslow et al. (1992) have shown that every Leontief substitution flow problem with an
integral A and rational b is TDI. And using this they prove that if a Leontief substitution flow
problem with integral A,b has an optimal solution then it has an integral optimal solution.
Also they indicate how this result can be derived from Veinott’s Theorem 2.1.

2.5. The multistage insertion formulation. In this subsection we state the MI-formulation
given by Arthanari (1982) and briefly outline some properties and its connection to pedi-
grees, and STSP (Arthanari 2005, 2006, 2008). The standard formulation of the STSP is
due to Dantzig, Fulkerson and Johnson (DFJ) (Dantzig et al. 1954). As every tour is a
2 matching, and the converse is not true, as a 2 matching could correspond to a subtour,
they give a 0− 1 programming formulation having n equalities and exponentially many
inequalities that ensure subtours are eliminated from consideration. Given n, relaxing
the integer restriction of the DFJ formulation we obtain the subtour elimination polytope
(SEP(n)).

MI-formulation is based on constructing STSP tours by sequentially inserting nodes into
the initial tour of three nodes 1, 2 and 3. Given graph Kn, starting with tour T3 = [1,2,3,1],
nodes from 4 to n are inserted sequentially between the nodes of the sub-tour obtained until
a complete tour of size n is achieved. For all 1≤ i < j ≤ k−1 and 4≤ k ≤ n, the decision
variables of MI-formulation are defined as follows:

xi jk =

{︃
1, if node k is inserted between nodes i and j,
0, otherwise.

We also use the equivalent notation xk(e) for xi jk when e = (i, j) ∈ Ek−1.
Let ci j be the cost of an edge (i, j) ∈ En. The insertion of some node k between nodes i

and j, would replace the edge (i, j) with two new edges of (i,k) and ( j,k) in the tour. This
will increase the total cost of the tour by Ci jk = cik + c jk− ci j. The objective function of
MI-formulation is to minimize the total incremental cost. MI-formulation (Arthanari 1982)
is:

min
n

∑
k=4

∑
(1≤i< j≤k−1)

Ci jkxi jk
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subject to:

∑
1≤i< j≤k−1

xi jk = 1, 4≤ k ≤ n, (8)

n

∑
k=4

xi jk ≤ 1, 1≤ i < j ≤ 3, (9)

−
i−1

∑
r=1

xri j−
j−1

∑
s=i+1

xis j +
n

∑
k= j+1

xi jk ≤ 0, 4≤ j ≤ n−1,1≤ i < j, (10)

xi jk ∈ {0,1}, 4≤ k ≤ n,1≤ i < j ≤ k−1. (11)

Constraint (8) of the model guarantees that each node from 4 to n is inserted in some edge.
Constraint (9) ensures that at most one node is inserted in each of the edges of T3. Constraint
(10) makes sure that a node is inserted into an edge of the subtour only if that edge has been
generated through previous insertions and is available.

By relaxing the integer constraint from MI-formulation and also adding the redundant
constraints

−
i−1

∑
r=1

xrin−
n−1

∑
s=i+1

xisn ≤ 0, i = 1, . . . ,n−1, (12)

we obtain MI-relaxation problem (Problem 2 in Arthanari and Usha 2000).
Let the slack variables corresponding to MI-relaxation problem be denoted by ui j,

corresponding to the inequality for edge (i, j). It is shown by Arthanari and Usha (2000)
that for any MI problem instance of size n, if for some i, j ∈Vn the slack variable ui j = 1,
then the edge (i, j) is present in the tour given by the optimal solution of the problem.
The polytope corresponding to MI-relaxation problem is called the PMI(n). The affine
transformation of PMI(n), projecting out xi jk variables, is denoted by U (n). Arthanari
and Usha (2000) compared U (n) with the SEP(n), and proved that U (n)⊆ SEPn. Thus
MI-formulation is as tight as the standard DFJ formulation and has only polynomially
many constraints. Different formulations of TSP varying in size and in the strength of
the LP relaxations have been compared in the literature (Langevin et al. 1990; Padberg
and Sung 1991; Gouveia and Voß 1995; Orman and Williams 2007; Öncan et al. 2009;
Roberti and Toth 2012; Godinho et al. 2014). In the article by Roberti and Toth (2012) we
find a diagram that brings out the order relations among the linear relaxations of several
polynomial formulations and of DFJ formulation, with respect to strength. Formulations by
Dantzig et al. (1954), Wong (1980), Claus (1984), and Langevin et al. (1990) are equivalent,
as they all achieve the same LP optimal value. However, they may not be similar in terms
of computational burden as notice in the literature (Gubb 2003; Öncan et al. 2009; Haerian
Ardekani 2011).

2.6. Properties of pedigree polytope. Earlier we introduced Hamiltonian cycles in a
complete graph of n vertices. Now here we introduce the objects called pedigrees. We shall
show the 1−1 correspondence between Hamiltonian cycles and pedigrees.

First we define a generator of an edge.

Definition 2.10. Edge Generators: Given e = (i, j)∈ En, G(e) is called the set of generators
of e, and it is defined as follows:
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G(e) =
{︃

δ (i)∩E j−1, if j ≥ 4,
E3 \{e}, otherwise.

Since an edge e = (i, j), j > 3 is generated by inserting j in any e′ in the set G(e), the name
generator is used to denote any such edge.

Example 2.1. Consider n= 5,e= (1,5). Here j≥ 4, so, we have G(e) = δ (i)∩E j−1. Since
i= 1,δ (1)= {(1,2),(1,3,)(1,4),(1,5)}, and E j−1 =E4 = {(1,2),(1,3),(2,3),(1,4),(2,4),
(3,4)}. Therefore, G(e) = {(1,2),(1,3,)(1,4)}.

Consider e = (2,3). Since j ≤ 3, we have G(e) = E3 \{e}= {(1,2),(1,3)}.

The following is one of the possible ways to define our main object of interest, namely, a
pedigree. The other equivalent definitions are given in later sections.

Definition 2.11. Given n, consider W = (e4, . . . ,en), where ek = (ik, jk) for 1≤ ik < jk ≤
k−1,4≤ k ≤ n. W is called a pedigree if and only if

(1) ek,4≤ k ≤ n, are all distinct,
(2) ek ∈ Ek−1,4≤ k ≤ n, and
(3) for every k,5 ≤ k ≤ n, there exists a e′ ∈ G(ek) such that, eq = e′, where q =

max{4, jk}.

Let Pn denote the set of all pedigrees for a given n > 3. For any 4 ≤ k ≤ n, given an
edge e ∈ Ek−1, with edge label l, we can associate a 0−1 vector, x(e) ∈ Bpk−1 , such that,
x(e) has a 1 in the lth coordinate, and zeros else where. That is, x(e) is the indicator of e.

Let E = E3 × E4 . . .× En−1 be the ground set. Let Bτn denote the set of all binary
vectors with τn coordinates. That is , here {0,1}|E| = Bτn . Then, we can associate an
X = (x4, . . . ,xn) ∈ Bτn , the characteristic vector of the pedigree W , where (W )k = ek, the
(k−3)rd component of W , 4≤ k ≤ n and xk is the indicator of ek.

Let Pn = {X ∈ Bτn : X is the characteristic vector of W , a pedigree}. Consider the
convex hull of Pn. We call this the pedigree polytope, denoted by conv(Pn).

Given a cost vector C ∈ Rτn , we wish to find a pedigree X∗ in Pn that minimizes CX∗.
We have a combinatorial optimization problem, called the pedigree optimization problem
(POP). As indicated in the introduction, in section 2.5 we shall see that the symmetric
traveling salesman problem can be posed as a POP.

Definition 2.12. Let y(e) be the indicator of e ∈ Ek. Given a pedigree, W = (e4, . . . ,ek)
(with the characteristic vector, X ∈ Pk) and an edge e ∈ Ek, we call (W,e) = (e4, . . . ,ek,e)
an extension of W in case (X ,y(e)) ∈ Pk+1.

A pedigree W = (e4, . . . ,en) ∈Pn is such that (e4, . . . ,ek) is a pedigree in Pk , for
4≤ k ≤ n. We state this interesting property as a fact below:

Given n > 3, X = (x4, . . . ,xn) ∈ Pn, let X restricted to the first k−3 stage(s), be written as

X/k = (x4, . . . ,xk).

Fact: Given X ∈ Pn and any k such that 4≤ k ≤ n, X/k is in Pk.
Similarly, X/(k−1) and X/(k+1) are interpreted as restrictions of X .
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Example 2.2. Consider W given by

W = (e4 = (1,3),e5 = (2,3),e6 = (3,4),e7 = (2,5)).

W is a pedigree because 1] all the edges are distinct 2] ek ∈ Ek−1,k = 4, . . . ,7 and 3]
e4 = (1,3) is a generator of e5 and e6 = (3,4). Also e5 = (2,3) is a generator of e7 = (2,5).

Let e = (3,5) ∈ E7. Here q = 5. Then (W,e) is a pedigree as 1] e does not appear in
W , 2] G(e) = {(1,3),(2,3,)(3,4)} and e5 = (2,3) is in G(e). However, if e were (2,6),
we have q = 6, and G(e) = {(1,2),(2,3),(2,4),(2,5)}. But e6 = (3,4) is not in G(e). So
(W,e) is not an extension of W .

Pedigree polytope is the integer hull of MI-relaxation polytope, like the tour polytope is
the integer hull of the subtour elimination polytope. Unlike the tour polytope the pedigree
polytope has a nicer adjacency structure. Research on pedigree polytopes and their connec-
tion to tour polytopes are of interest because in the graph of pedigree polytope, given two
pedigrees, whether they are adjacent or not can be checked by a strongly polynomial algo-
rithm as shown by Arthanari (2006). Also pedigree polytope is a combinatorial polytope, in
the sense of Naddef and Pulleyblank (Naddef and Pulleyblank 1981). Pedigree polytope
and its properties are studied by Arthanari (2005, 2006, 2008, 2013a,b). Arthanari (2013b)
establishes that a sufficiency condition for nonadjacency in tour polytope is nonadjacency of
the corresponding pedigrees in the pedigree polytope. Also, pedigree polytope as an exten-
sion of tour polytope is an extension without hidden vertices (Pashkovich and Weltge 2015).
Recently, Makkeh et al. (2016), based on the characterization of adjacency in Pedigree
graph given by Arthanari, study an adjacency game. The authors using this game show that
the minimum degree for a vertex in a pedigree graph is asymptotically equal to the number
of vertices - i.e., asymptotically the graph is almost complete. These properties of pedigree
polytope, along with the computational results on MI-relaxation, favour using pedigree
approach to solving STSP. And hence the results obtained in the subsequent sections are
important in pushing the boundary of solving MI-relaxation instances.

3. MI-relaxation and Leontief substitution flow problem

A special case of the minimum cost hypergraph flow problem discussed in section 2.1 is
the minimum cost gainfree Leontief substitution flow problem. In this section we show that
MI-formulation contains a subproblem that is a gainfree Leontief substitution flow problem.

Consider a hypergraph H = (V ,E ). We can write the vertex-hyperarc incidence matrix
M = [mv,e] corresponding to H as follows:

mv,e=(Te,he) =

⎧⎨⎩ 1 if v = he,
−µv(e) if v ∈ Te,
0 otherwise.
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Matrix E[n] for n = 6

E[6] =

⎛⎝ 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

⎞⎠

We can write the minimum cost hypergraph flow problem 2.1 equivalently in matrix form
as:

min ∑
e∈E

c(e) f (e) (13)

M f = b, (14)
f ≥ 0, and (15)
f ≤ w. (16)

Notice that in M every column corresponding to a hyperarc has at most one positive element,
namely, +1. Such matrices are studied in economics, inventory management and other
fields.

We consider now MI-formulation in matrix form after introducing required matrix
notations.

Definition 3.1. In general, let E[n] denote the matrix corresponding to Eq. (8); let A[n]
denote the matrix corresponding to the inequalities (9, 10 & 12). Let 1r denote the row
vector of r 1′s. Let Ir denote the identity matrix of size r× r. Then we can write recursively,

E[n] =

⎛⎜⎜⎜⎝
1p3 . . . 0 0

...
...

...
...

0 . . . 1pn−2 0
0 0 . . . 1pn−1

⎞⎟⎟⎟⎠=

(︃
E[n−1] 0

0 1pn−1

)︃
.

To derive a similar expression for A[n] we first define

A(n) =

(︃
Ipn−1
−Mn−1

)︃
where Mi is the i× pi node-edge incidence matrix. Then

A[n] =

⎛⎜⎝ A(4) | A(5) | | A(n)

| |
. . . |

0 | 0 | |

⎞⎟⎠=

(︃
A[n−1] | A(n)

0 |

)︃
.

Observe that A(n) is the submatrix of A[n] corresponding to xn. The number of rows of 0′s is
decreasing from left to right.

MI-formulation can be recast in matrix notation as:

Find X∗ ∋CX∗ = min{CX |X ∋ E[n]X = 1n−3,A[n]X ≤
[︃

13
0

]︃
,X ∈ {0,1}τn}.
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Matrix A[n] for n = 6

A[6] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
−1 −1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
−1 0 −1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 −1 −1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 −1 −1 0 −1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 −1 0 −1 0 −1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 −1 −1 0 0 −1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 −1 −1 0 −1 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 −1 0 −1 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 −1 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that the elements of the constraint matrix of MI-formulation are 0,±1; the right
hand side is a nonnegative integer vector and there are two +1’s in each column correspond-
ing to any xi jk, once in E[n] and another time in A[n]. And so, unfortunately this problem
does not correspond to a gainfree Leontief substitution flow problem.

Definition 3.2. We say X is a pre-solution to MI-relaxation if X satisfies the inequalities 9,
10 and 12. In addtion if X is non negative we say X is a feasible pre-solution. Equivalently,
X is a pre-solution to MI-relaxation problem means

A[n]X + IPnu =

[︃
13
0

]︃
.

So a feasible pre-solution X , if in addition satisfies Eq. 8, we have a feasible solution to
MI-relaxation.

Define

X (n) = {X | E[n]X = 1n−3} (17)

U (n) = {u ∈ Rpn ,u≥ 0 | ∃ X ∈X (n) ∋ A[n]X + Ipnu =

[︃
13
0

]︃
, X ≥ 0} (18)

Remark 3.1. If X is a pre-solution to MI-relaxation, then pre-multiplying both sides of

A[n]X + Ipnu =

[︃
13
0

]︃
by c and noting that cA[n] is indeed −C, we get cu = c

[︃
13
0

]︃
+CX .

So, it is seen that the objective function of MI-formulation is equivalent to cu but for
the constant c12 + c13 + c23. So we can equivalently write MI -relaxation problem as
Problem 3.1.
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Problem 3.1.

minimise cu (19)

subject to A[n]X + Ipnu =

[︃
13
0

]︃
(20)

X ≥ 0 (21)
u≥ 0 (22)

X ∈X (n). (23)

Now notice that the system given by Eqs. 20, 21 and 22 corresponds to a gainfree Leontief
substitution system, as (a) the system matrix, A[n], Ipn is a pre-Leontief matrix, (b) all the
rows of this system are nontrivial, (c) elements of the system matrix are ±1 or 0, (hence
gainfree) and (d) the right hand side is a nonnegative integer vector. Therefore a feasible
pre-solution X to MI-relaxation with the corresponding u provides us a solution (X ,u) to
this system. And the basic feasible solutions of this system are integral, by an application of
Veinott’s Theorem 2.1 and using the directed hypertree corresponding to the basis. Thus we
have Theorem 3.1.

Theorem 3.1. Consider Problem 3.1 excluding the restriction 23

minimize cu,subject to A[n]X + Ipnu =

[︃
13
0

]︃
,X ,u≥ 0.

We have a gainfree Leontief substitution flow problem, and every feasible basis is integral.

We shall use this fact subsequently to devise algorithms based on Lagrangian relaxation
of the equality constraints 23. In section 2.3 we reviewed the literature on Lagrangian
relaxation. We apply some of the approaches and tips to solve Problem 3.1.

We next propose different algorithms based on Lagrangian relaxation as applied to
MI-relaxation problem.

3.1. Lagrangian relaxation of Multiple Choice Constraints. Consider Problem 3.1. We
could rewrite it using Lagrangian multipliers corresponding to the multiple choice con-
straints given by Eq. (23) as:

Problem 3.2. [Lagrangian Relaxation problem: LRλ ]

minimise cu+
n

∑
k=4

λk( ∑
1≤i< j<k

xi jk−1) (24)

subject to A[n]X + Ipnu =

[︃
13
0

]︃
(25)

X ≥ 0 (26)
u≥ 0 (27)

λ real. (28)

As observed earlier in Theorem 3.1, Problem-LRλ is a gainfree Leontief flow problem and
so we can apply the strongly polynomial value iteration algorithm from (Jeroslow et al.
1992). Thus Lagrangian subproblem for a given λ is not only easy to solve but also provides
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an integer optimal solution. Now to solve LD, we could resort to subgradient optimization
or other approaches.

3.2. Value iteration algorithm for Problem 3.2. Consider the dual of the Problem LRλ

for a given λ . We introduce variable πi j for each row of Eq. (25), ∀ 1≤ i < j ≤ n. For each
hyperarc ({(i,k),( j,k)},(i, j)) corresponding to the variable xi jk we have a dual constraint;
for each hyperarc ( /0,(i, j)) corresponding to the slack variable ui j we have an upper bound
constraint for the dual variable, πi j as follows:

πi j ≤ λk +πik +π jk, ∀ 1≤ i < j < k; k = 4, . . . ,n, (29)

πi j ≤ ci j, ∀1≤ i < j ≤ n. (30)

In the paper by Jeroslow et al. (1992) we have a strongly polynomial successive approxima-
tion scheme. This is based on the Bellman-Ford method (see, for instance, Chapter 7 of
Korte and Vygen 2012), which finds either a negative cost cycle or s− t shortest paths for a
given s ∈ G, a directed graph with edge costs. We specialize the value iteration algorithm
for this specific gainfree Leontief flow problem at hand and get Algorithm 1. Let M be a
sufficiently large positive value, which is used to initialize the solution.

Algorithm 1 Algorithm: Value Iteration for LRλ

INPUT: ci j,cost coefficient for ui j ∀ 1≤ i < j ≤ n,λk, for k = 4, . . . ,n.
OUTPUT: k∗(i, j), t[i j] ∀ 1≤ i < j ≤ n. Dual solution to LRλ , that is, π

t[i j]
i j ∀ 1≤ i < j <

k ≤ n.
Step 1 π0

i j←M; t[i j]← 0;∀(i, j) ∈ En; t← 0;
Step 2 Iterative Step:
while some π t

i j changed; do
t← t +1;
for (i, j) ∈ En do

k̄ = argmin{λk +π
t−1
ik +π

t−1
jk |4≤ k ≤ n};

π t
i j = min{π t−1

i j ,λk̄ +π
t−1
ik̄ +π

t−1
jk̄ ,ci j};

if π
t−1
i j > π t

i j then
k∗(i, j)← k̄;
t[i j]← t

end if
end for

end while
return k∗(i, j), t[i j],π t[i j]

i j ∀ 1≤ i < j ≤ n.

Lemma 3.2 of (Jeroslow et al. 1992) asserts that, given a Leontief flow problem for a
Leontief directed hypergraph H = (V ,E ), if there is a basic feasible flow f̄ having acyclic
support with a hyperarc directed into every nontrivial vertex, and a complementary dual
solution feasible for the dual, then for all nontrivial vertex in V , their value iteration
algorithm finds this dual solution after at most |V | iterations. So we have a strongly
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polynomial method for solving the problem LRλ . We can recover the primal solution for the
problem LRλ using the specialized version ( Algorithm 2) of the primal retrieval steps given
by Jeroslow et al. (1992). Let us denote xi jk by x[k : (i, j)] for the hypergraph flow variable
corresponding to the hyperarc ({(i,k),( j,k)},(i, j)). This way the head of the hyperarc is
clearly seen as (i, j) and the tail set {(i,k),( j,k)} corresponds to the insertion of k in (i, j).
We wish to retrieve these values for a given dual solution obtained from the value iteration
Algorithm 1.

Algorithm 2 Algorithm: Primal Retrieval for LRλ

INPUT: bi j,demand at node (i, j);k∗(i, j), t[i j] from value iteration algorithm, ∀ 1 ≤ i <
j ≤ n.
OUTPUT: Primal solution to LRλ , that is, x[k : (i, j)] ∀ 1≤ i < j < k ≤ n.
Step 1: Set x[k : (i, j)]← 0 ∀ (k : (i, j) ∈ E ; create active vertex list Ṽ ← En; set vertex
flows fi j← bi j ≥ 0 ∀ (i, j) ∈ Ṽ .
Step 2 Iterative Step:
while Ṽ ̸= /0, do

Let t[(ī, j̄)] = max{t[(i, j)] | (i, j) ∈ Ṽ}.
Choose the hyperarc with head (ī, j̄) and tail set {(ī,k∗ī j̄),( j̄,k∗ī j̄)} and
update x[k∗ī j̄ : (ī, j̄)]← fī j̄;
fī,k∗ī j̄
← fī,k∗ī j̄

+ x[k∗ī j̄ : (ī, j̄)];

f j̄,k∗ī j̄
← f j̄,k∗ī j̄

+ x[k∗ī j̄ : (ī, j̄)];

Ṽ ← Ṽ \{(ī, j̄)}.
end while
return x[k : (i, j)] ∀ 1≤ i < j < k ≤ n.

Thus we have a way to recover the primal solution from a solution to Problem 3.2 without
further increasing the complexity of solving the Problem 3.2. The time complexity of
solving this problem using value iteration algorithm and primal retrieval is O(n2) as the
number of rows in the gainfree Leontief flow problem (Problem 3.2) is pn +(n−3).

3.2.1. Lagrangian Dual of Problem 3.1: LD. As discussed in subsection 2.3 to find the
best possible Lagrangian bound we solve the Langrangian Dual problem. Here we consider
LD given by

Problem 3.3. [Lagrangian Dual: LD] Find λ ∗ real ∋ z(LD) = z(LRλ ∗) = maxλ{z(LRλ )}.

As mentioned earlier subgradient optimization is applied in practice to solve this problem,
though we do not have any complexity bounds on using subgradient optimization. Theoreti-
cally, we can guarantee a polynomial time algorithm to find the optimal value of the prob-
lem 3.1 using Vaidya’s sliding objective algorithm (Vaidya 1990), as discussed by Bertsimas
and Orlin (1994). Bertsimas and Orlin propose techniques for the solution of the LP relax-
ation and LD in combinatorial optimization problems. One can use simplified and strength-
ened version as in (Anstreicher 1997) in place of Vaidya’s algorithm. One of the structured
LP problems they discuss is min{∑N

r=1 crxr | ∑N
r=1 Arxr = b,xr ∈Sr,r = 1, . . . ,N}. Notice
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that Problem 2.3 can be written in this form using A(k) matrices defined earlier (Defini-
tion 3.1) as:

min{ ∑
1≤i< j≤n

ci jwi j |
n

∑
k=4

A(k)xk + Ipnw =

[︃
13
0

]︃
,1pn ≥ w≥ 0,

xk ∈Sk,r = 4, . . . ,n},
with

Sk = {xk = (x12k, . . . ,xk−2k−1k)≥ 0 | ∑
1≤i< j<k

xi jk = 1}.

Let {xl
k, l ∈ Jk} be the set of extreme pints of Sk. Let y,µ ∈ Rpn , and σk ∈ R,k = 4, . . . ,n.

We can write the dual of the above problem as:

Problem 3.4.

z(D) = maxyb+ ∑
1≤i< j≤n

µi j +
n

∑
k=4

σk (31)

subject to yA(k)xl
k +σk ≤ 0, ∀ l ∈ Jk and k ∈ {4, . . . ,n}, (32)
y+µ ≤ c. (33)

As suggested by Bertsimas and Orlin’s approach we solve the problem 3.4 using Vaidya’s
algorithm; which in turn solves a separation problem for all k, given a solution y,µ,σ to
this problem. Each separation problem turns out to be a problem of finding minimum over a
multiple choice constrained set having pk variables. So it can be done in time O(pk). So we
could apply Theorem 2 of (Bertsimas and Orlin 1994) to obtain a bound on the complexity
of solving this problem given by

Theorem 3.2. The optimal solution value of problem 3.1 and the optimal dual variables
can be found in O([∑n

k=4 pk−1](pn+(n−3))L+M[pn+(n−3)](pn+(n−3))L) arithmetic
operations, where L is the input size of the instance, M[s] is the number of arithmetic
operations to multiply two matrices of size s× s.

Following Theorem 1 of (Bertsimas and Orlin 1994), the authors discuss finding a
solution to the problem 3.1 without changing the overall complexity of the method. However,
we often want to find the optimal solution value rather than the solution of the LP or
Lagrangian relaxation, since the solution value can be later used in a branch and bound
algorithm. Bertsimas and Orlin (1994) apply their approach to solve LD discussed in
general. So we could apply the same to problem 3.3. The separation problem in this
case turns out to be a Leontief substitution flow problem and so we can solve it in time
O(pn), as observed earlier. Thus, using Theorem 4 in (Bertsimas and Orlin 1994) we have
a polynomial algorithm of complexity O(pn(pn +n−3)L+M(pn +n−3)(pn +n−3)L)
to solve LD. Notice that this algorithm, complexity wise is superior to the one mentioned
above in Theorem 3.2.

However, in practice subgradient optimization and its variants are observed to perform
well (Lorena and Narciso 2002; Zamani and Lau 2010) for solving LD. There are other
competing methods like Volume method and Bundle method, which could be compared
with subgradient approach to solve LD.
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4. Hypergraph flow and MI-relaxation

A simple trick converts MI-relaxation problem into a minimum cost hypergraph flow
problem. We noticed earlier that the system of equations is not a pre-Leontief system and
since there are two +1’s in each column; it also does not correspond to a hypergraph flow
problem. But multiplying both sides of the multiple choice Eqs. (23) by −1, with the rest
of the constraints intact, we get a minimum cost hypergraph flow problem corresponding to
MI-relaxation. But this destroys the Leontief substitution flow structure as the righthand
side elements are not nonnegative anymore. Here we study the special minimum cost
hypergraph flow problem at hand bringing out the changes required in the procedures used
in the hypergraph simplex algorithm of Cambini et al. (1992).

We consider the following hypergraph H = (V ,E ) corresponding to MI-formulation.
We have, V = {4, . . . ,n}∪{(i, j) | 1≤ i< j≤ n}with E = {( /0,(i, j)) | (i, j)∈V }∪n

k=4{(k :
(i, j)) | 1 ≤ i < j < k} where (k : (i, j))denotes the hyperarc({(i,k),( j,k),k},(i, j)), for
1≤ i < j < k,k ∈ V .

Theorem 4.1. The hypergraph H = (V ,E ) corresponding to MI-formulation is cycle-free.

Proof: Vertices in S= {4, . . . ,n} have no hyperarcs entering any of k∈ S. So any directed
path starting from k cannot end in k. So there are no cycles involving k ∈ S. Consider any
(i, j) ∈ V , for any 1≤ i < j ≤ n.

Case 1: (i, j) ∈ V ,1 ≤ i < j ≤ 3. Since none of these vertices is in the tail set of any
hyperarc, a directed cycle involving such an (i, j) is not possible. Case 2: (i, j) ∈ V ,1≤
i < j,4≤ j ≤ n. Suppose for some (i0, j0) there is a directed cycle, then (i0, j0) is the head
for an hyperarc e and is in the tail set of another hyperarc, e′. Therefore, e′ has to be an arc
( j0 : (u,v)) for some u < v < j0 with u or v = i0 and e is either ( /0,(i0, j0)) or (r : (i0, j0))
for some n≥ r > j0.

First we show that e = ( /0,(i0, j0)) is not possible. In any directed path, if e appears as ei
for some 1≤ i≤ q then the vertex vi is required to belong to {hei−1}∪Tei . But Tei = Te = /0
implies e cannot appear in any such directed path.

So e = (r : (i0, j0)) for some n≥ r > j0. Now we have in the directed path,

. . . ,(r : (i0, j0)),(i0, j0),( j0 : (u,v)), . . .

with u < v < j0 and one of u or v = i0.
Thus any directed path Pst = (v1 = s = (i, j),e1,v2, . . . ,eq,vq+1 = t) in H is such that

heq = t and t = (a,b) with max{a,b}< j. Therefore t = s is not possible, and hence H is
cycle-free.2

Theorem 4.2. Given any pedigree P, we have a spanning hypertree of H = (V ,E ) given
by (V ,ET ) with

ET = {(k : (i, j) | (i, j) ∈ E(P)}∪{( /0,(i, j) | (i, j) ∈ En−1 \E(P)},
where, E(P) = {(ik, jk) | 4≤ k ≤ n,∋ P = ((i4, j4), . . . ,(in, jn)) is the given pedigree }.

Proof:Since ET ⊂ E and (V ,ET ) is a subhypergraph of H , (V ,ET ) is cycle-free. Let
R = {k | 4 ≤ k ≤ n}, then N = V \R. So (V ,ET ) satisfies the requirement R∩N = /0.
No hyperarc in ET has a vertex in R as its head. Every vertex v = (i, j) ∈ N either has a
unique hyperarc (k : (i, j)) entering (i, j) if (i, j) ∈ E(P) or has a unique hyperarc ( /0,(i, j))
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entering (i, j) if (i, j) /∈ E(P). Thus (V ,ET ) is indeed a hypertree. Notice that it is a
spanning hypertree as well, as all vertices in V are spanned. Since we have m = |V | is the
number of vertices and we have only |ET | hyperarcs, we need to add n−3 other hyperarcs
such that the incidence matrix corresponding to the spanning hypertree is extended to a
basis of size m×m. The n−3 hyperarcs external to the hyperarcs in ET are such that they
have at least one non-zero element among the last En elements of the column. Let TR be a
traverse of (V ,ET ) given by

(R,( /0,(in,n)),(in,n),( /0,( jn,n)),( jn,n),(n : in, jn), . . . ,(4 : i4, j4),( /0,(i, j)),(i, j),

∀(i, j) /∈ E(P)).
This introduces an order among the vertices and hyperarcs and this order is used in rear-
ranging the incidence matrix of the spanning hypertree.

Remark 4.1.
(1) Notice that ∀e ∈ E \ET ,Te∪{he} is not a subset of R as every hyperarc not in ET

has he ∈ En and so not in R.
(2) In general hypergraph flow problems, we may not always have an initial primal

feasible solution to the hypergraph flow problem. But for MI-hypergraph flow
problem, we have a feasible basis given by the spanning hypertree corresponding
to any pedigree, so we can start the hypergraph simplex algorithms without phase I
using artificial variables.

(3) The set of linearly independent columns corresponding to the hyperarcs in ET ,
needs to be expanded to a basis of size m×m.

Example 4.1. Consider n = 6 and the pedigree in P6 given by P = ((1,3),(1,4),(2,3)).
The corresponding spanning tree is given in Figure 1. The corresponding traverse TR of the
spanning hypertree with root R = {4,5,6} and ET = {(4 : (1,3)),(5 : (1,4)),(6 : (2,3))} ∪
{( /0,(i, j)) | (i, j) ∈ E5 and (i, j) /∈ the pedigree P} is:

TR = (R,( /0,(2,6)),(2,6),( /0,(3,6)),(3,6),(6 : (2,3)),(2,3),( /0,(1,5)),(1,5),( /0,(4,5)),

(4,5),(5 : (1,4)),(1,4),( /0,(3,4)),(3,4),(4 : (1,3)),(1,3),( /0,(1,2)),(1,2),( /0,(2,4)),
(2,4),( /0,(2,5)),(2,5),( /0,(3,5)),(3,5),( /0,(1,6)),(1,6),( /0,(4,6)),(4,6),( /0,(5,6)),(5,6)).

We expand this to a basis by adding 3 (= 6−3) more external hyperarcs (4 : (1,2),(5 : (3,4)
and (6 : (3,5)) that are linearly independent of the set of columns corresponding to the 15
hyperarcs in ET . This initial basis is shown in Table 1. Notice that it is an upper triangular
matrix.

We briefly reproduce the main steps of the Hypergraph Simplex from (Cambini et al.
1992; Scutellà et al. 1996). Since we have an initial basis we proceed to discuss the
hypergraph simplex method for solving the minimum cost hypergraph flow problem. Each
basis M corresponds to a pair (TR,EX ) where TR is a spanning hypertree of the sub-
hypergraph corresponding to M. EX is the set of the external hyperarcs, that is, the basic
hyperarcs other than the hyperarcs in the spanning hypertree. The number of external
arcs is same as the number of root vertices of TR. The root matrix MR is given by rows
corresponding to the root vertices and columns corresponding to the external hyperarcs. M
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TABLE 1. Initial basis corresponding to the spanning hypertree for Example 4.1
(zeros are suppressed).

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hyperarc→ 06 05 04 04 05 06
vertex 26 36 23 15 45 14 34 13 12 24 25 35 16 46 56 12 34 35

4 −1 −1
5 −1 −1
6 −1 −1
26 1 −1
36 1 −1 −1
23 1
15 1 −1
45 1 −1 −1
14 1 −1 −1
34 1 −1 1
13 1
12 1 1
24 1 −1
25 1
35 1 −1 1
16 1
46 1
56 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FIGURE 1. Spanning tree for Example 4.1

corresponds to a basis if and only if the matrix MR is non-singular. MR can be completely
characterized in terms of hypergraph concepts like flows and potentials. Let b̄=(b̄(R), b̄(N))
be the demand vector induced on the vertices by the flows on the non-basic hyperarcs. Then
the system M f = b̄ can be solved by the procedure PRIMAL, and πM = c̄ can be solved by
the DUAL procedure given by Cambini et al. (1992). The optimality of the current basis
is checked using reduced costs thus computed. The optimality conditions are, as usual,
based on the reduced costs: non- basic hyperarcs must have reduced costs ≥ 0 if their flow
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is zero, and reduced costs ≤ 0 if their flow is at the upper bound. If these conditions are
satisfied, M is optimal and the algorithm terminates. The steps of the simplex method are
similarly inherited in hypergraph simplex, like choosing the hyperarc to enter and choosing
the hyperarc to leave the basis; but these are done on the hypergraph, using hypergraph
concepts.

Since the reported performance of the hypergraph simplex compared to that of generic
LP solvers is superior, it is worth specializing the procedures FLOW1, POTENTIAL, and
PRIMAL, DUAL of hypergraph simplex algorithm to the particular special hypergraph
corresponding to MI-MIrelaxation. Once these are implemented in a computer, the new
algorithms based on the value iteration algorithm for Leontief substitution flow problem and
the special minimum cost hypergraph flow algorithm could be compared with commercially
available/opensource LP solvers.

A four phase approach to experimentally compare the efficacy of the suggested new algo-
rithms is planned. Phase 1 is generating the computer codes for the specialized subroutines
and algorithms and testing them. Phase 2 is the implementation of a prototype from the
algorithms in phase 1. Phase 3 consists of optimizing the prototype from phase 2. Phase 4
consists of computational experiments. First phase in this plan is recently completed and
appears in (Arthanari and Qian 2018).

5. Planned experiments to compare the proposed algorithms

Though some theoretical computational complexity results are given on the algorithms
proposed in the preceding sections, the importance of conducting comparative computational
experiments on TSBLIB test problems can not be undermined. For this reason experiments
are planned to test Lagrangian based algorithms and minimum cost hypergraph flow simplex
algorithm on two sets of problems: [1] STSP problems in (Reinelt 1991) and [2] randomly
generated Euclidean STSP problem instances with varying sizes. The integrality gap, CPU
time, number of iterations and other performance statistics on procedures like the value
iteration, flows and potentials used in the algorithms would be collected. The main aim
of the experiments is to estimate the compression in computational time achieved by the
new algorithms compared to solving these LP instances using commercial (as well as other
open source) generic LP solvers. Based on the reported advantages of using Lagrangian
approach in STSP and other difficult combinatorial problems, and the superior performance
of Hypergraph Simplex algorithm of Cambini et al. (1992), we are encouraged to conduct
this computational comparisons. Also the special structure of MI-relaxation is expected to
show additional computational advantage with further specialized versions of value iteration
and hypergraph flow algorithms, fully exploiting MI-relaxations recursive structure.

6. Conclusions and future research directions

MI-formulation given by Arthanari (1982) is a compact alternative formulation for STSP,
which has fewer constraints than the standard formulation by Dantzig et al. (1954). Com-
putational experiments comparing MI-relaxation with other formulations have shown the

1The specialized version of the procedure FLOW (Cambini et al. 1992) is included in the Appendices (see
Appendix 2).
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superiority of MI-formulation with respect to integrality gap and other measures. How-
ever, in those, the size of the instances considered are less than 320 (Gubb 2003; Haerian
Ardekani 2011), and the relaxed LP problems are solved using commercially available
general purpose LP solvers. So in this paper the possibility of devising special purpose
algorithms that completely exploit the structure of MI-relaxation problem is addressed.
New algorithms based on the Leontief substitution flow problem and the minimum cost
hypergraph flow problem are given. Computational complexity of some of the algorithms
suggested are discussed. The plan for a computational experiment to compare the new
algorithms with commercially available LP solvers is outlined. From the positive experience
reported on hypergraph simplex method of Cambini et al. (1992) and Scutellà et al. (1996),
and Lagrangian approach in general for combinatorial optimization and the strongly poly-
nomial value iteration method for the Leontief substitution flow problem given by Jeroslow
et al. (1992) we expect as a result of the algorithms proposed, in future we would be able
to solve larger size instances of MI-relaxation. Also this paper advances the theoretical
possibilities of understanding MI-formulation from the hypergraph flow perspective.
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Appendices

Appendix 1: Excerpts from Haerian Ardekani (2011)

In Table 6.1 of Haerian Ardekani (2011) we have the computational comparisons of DFJ
relaxation and MI-relaxation on STSP instances from (Reinelt 1991). Here, column 1 gives
problem name. The value of the 2-matching relaxation and its gap are shown in columns LP1
Value, and LP1 Gap respectively. The number of violated subtour elimination constraints
found using two different algorithms are shown in column SEC1 and SEC2, respectively.
The solutions given by MI-formulation are given in the table as well as the CPU seconds
for the MI and the DFJ formulations. The results for the MI-relaxation formulation are
given separately in Table 6.2 of Haerian Ardekani (2011) in more detail. Table 6.2 includes
the optimal solution of the instances and the optimal solution of the MI-relaxation. The
solutions to the LP relaxation of the MI-formulation are equal to the results of the LP
relaxation of the DFJ formulation. Problems larger than 318 for MI-relaxation could not be
solved as it exceeded Cplex memory limit.

Ardekani solved diamond instances (Papadimitriou and Steiglitz 1977) from size 16 to
104 using LP relaxations of various TSP formulations . We did not solve instances larger
than 11-diamonds by the formulation of Wong (1980), or instances larger than 12-diamonds
by that of Claus (1984) or instances larger than 13-diamonds by the formulation of Carr
(1996) as it would exceed Cplex memory. The results of this experiment are presented in
Table 6.15 of Haerian Ardekani (2011).
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Table 6.2 from Haerian Ardekani (2011).
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Continuation of Table 6.2 from Haerian Ardekani (2011).

Table 6.15: Cplex Iterations for Solving Directed Diamond with ATSP Formulations 

 

 
k Si�e Carr Claus FGG Flood MI MTZ 

2 12 146 1230 10 9 7 10 

3 18 1351 5636 16 105 38 16 

4 24 3000 16510 24 206 88 22 

5 30 5261 34980 30 384 243 28 

6 36 12422 66997 37 587 464 35 

7 42 24594 120050 52 400 339 42 

8 48 43944 191265 58 794 751 46 

9 54 58468 296440 69 974 1048 52 

10 60 93089 422779 77 1565 1270 58 

11 66 133179 633209 78 2256 1599 64 

12 72 178982 949096 95 3276 2162 70 

 

 Table 6.15 from Haerian Ardekani (2011).
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Appendix 2

Here we give the specialized version of the FLOW procedure from Cambini et al. (1992).
This version uses the fact that the tail of a hyperarc in MI-relaxation problem is either /0 or
{(i,k),( j,k),k}, when the head is (i, j).

Algorithm 3 Procedure flow:

INPUT: Hypergraph H = (V ,E ),a spanning tree given byTR = (R∪N,ET );
a traverse of the spanning tree TR = (R,e1,v1, . . . ,eq,vq); demands at nonroot vertices
d(N),flows on external hyperarcs;external hyperarcs EX = E \ET .
OUTPUT: demands at root vertices d(R),and flows on tree hyperarcs f (T );
for v ∈ R do

d(v) = 0;
end for
for e = (k : (i, j)) ∈ EX do

d(i,k)← d(i,k)+ f (e);
d( j,k)← d( j,k)+ f (e);
d(k)← d(k)+ f (e);
d(i, j)← d(i, j)− f (e);

end for
for e = ( /0,(i, j)) ∈ EX do

d(i, j)← d(i, j)− f (e);
end for
for v ∈ V do

unvisited(v)← number of hyperarcs incident into v;
end for
Queue←{v | v is a leaf of TR};
while Queue ̸= /0 do

Select a v ∈ Queue;
Queue← Queue\ v;
let ev = (k′ : (i′, j′));
f (ev)← d(v) i f v = i′ j′,−d(v) otherwise;
for w ∈ {i′ j′, i′k′, j′k′,k′}\{v} do

d(w)← d(w)− f (ev) if w = i′ j′,d(w)+ f (ev), otherwise;
unvisited(w)← unvisited(w)−1;
if unvisited(w) = 1 and w /∈ R then

Queue← Queue∪{w};
end if

end for
end while
for v ∈ R do

d(v)←−d(v);
end for
return demands at root vertices: d(R),and flows on tree hyperarcs: f (T );
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