Role of RNA-binding proteins in both COPD and lung cancer

Francesco Nucera, Ilaria Salvato, Luca Ricciardi, Annunziata Nigro, Jessica Dal Col, Francesco Monaco, Antonio Ieni, Guido Fadda, Giovanni Tuccari, Cristiana Stellato, Gaetano Caramori

Abstract


Chronic obstructive pulmonary disease (COPD) is an independent risk factor for the development of lung cancer. Several pathogenic pathways such as oxidative stress and chronic inflammation of the lower airways are shared by these two diseases. The RNA-binding proteins (RBPs) can modulate the post-transcriptional expression of genes involved in several biological processes, such as cell cycle, cell proliferation and injury/stress responses. The bonding between RBPs and targeted transcripts regulates mRNA turnover, subcellular localization, splicing and translation, through the formation of ribonucleoproteins (RNPs) complexes. Several pro-inflammatory mediators, that induce and maintain chronic lung inflammation and carcinogenesis, are modulate by RBPs.


RBPs can have a key role in lung cancer onset in COPD patients, sharing several common pathogenic processes, including oxidative stress, inflammation of lower airways, DNA damage and impaired DNA-repair mechanisms.


Further studies are mandatory to clarify the application of RBPs as novel biomarkers and potential therapeutic targets. This review will investigate recent evidences showing the role of RBPs in the pathogenic mechanisms sharing by lung cancer and COPD

Keywords


chronic airway inflammation, COPD, lung cancer, post-transcriptional regulation, RNA-binding proteins

Full Text:

PDF

References


1. Criner, G.J., Agusti, A., Borghaei, H., Friedberg, J., Martinez, F.J., Miyamoto, C., Vogelmeier, C.F., Celli, B.R. (2022). Chronic Obstructive Pulmonary Disease and Lung Cancer: A Review for Clinicians. Chronic Obstr Pulm Dis, 9(3):454-476. doi: 10.15326/jcopdf.2022.0296.

2. Ma, H., Zhang, Q., Zhao, Y., Zhang, Y., Zhang, J., Chen, G., Tan, Y., Zhang, Q., Duan, Q., Sun, T., Qi, C., Li, F. (2022). Molecular and Clinicopathological Characteristics of Lung Cancer Concomitant Chronic Obstructive Pulmonary Disease (COPD). Int J Chron Obstruct Pulmon Dis,17:1601-1612. doi:10.2147/COPD.S363482

3. Caramori, G., Ruggeri, P., Mumby, S., Ieni, A., Lo Bello, F., Chimankar, V., Donovan, C., Andò, F., Nucera, F., Coppolino, I., Tuccari, G., Hansbro, P.M., Adcock, I.M. (2019). Molecular links between COPD and lung cancer: new targets for drug discovery?Expert Opin Ther Targets,23(6):539-553.doi: 10.1080/14728222.2019.1615884.

4. Perrotta, F., D'Agnano, V., Scialò, F., Komici, K., Allocca, V., Nucera, F., Salvi, R., Stella, G.M., Bianco, A. (2022). Minerva Med,113(3):436-448. doi: 10.23736/S0026-4806.22.07962-9.

5. Adcock, I.M., Caramori, G., Barnes, P.J. (2011). Chronic obstructive pulmonary disease and lung cancer: new molecular insights.Respiration,81(4):265-84. doi: 10.1159/000324601.

6. Nucera, F., Mumby, S., Paudel, K.R., Dharwal, V., Di Stefano, A., Casolaro, V., Hansbro, P.M., Adcock, I.M., Caramori, G. (2022). Role of oxidative stress in the pathogenesis of COPD. Minerva Med,113(3):370-404.doi: 10.23736/S0026-4806.22.07972-1.

7. Keene, J.D. (2007). RNA regulons: coordination of post-transcriptional events. Nat Rev Genet,8(7):533-543.doi: 10.1038/nrg2111.

8. Gerstberger, S., Hafner, M., Tuschl, T. (2014). A census of human RNA-binding proteins. Nat Rev Genet,15(12):829-845.doi: 10.1038/nrg3813.

9. Lunde, B.M., Moore, C., Varani, G (2007). RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol,8(6):479-90.doi: 10.1038/nrm2178.

10. Ray, D., Kazan, H., Cook, K.B., Weirauch, M.T., Najafabadi, H.S., Li, X., Gueroussov, S., Albu, M., Zheng, H., Yang, A., Na, H., Irimia, M., Matzat, L.H., Dale, R.K., Smith, S.A., Yarosh, C.A., Kelly, S.M., Nabet, B., Mecenas, D., Li, W., Laishram, R.S., Qiao, M., Lipshitz, H.D., Piano, F., Corbett, A.H., Carstens, R.P., Frey, B.J., Anderson, R.A., Lynch, K.W., Penalva, L.O.F., Lei, E.P., Fraser, A.G., Blencowe, B.J., Morris, Q.D., Hughes, T.R. (2013). A compendium of RNA-binding motifs for decoding gene regulation. Nature,499(7457):172-177.doi: 10.1038/nature12311.

11. Coppin, L., Leclerc, J., Vincent, A., Porchet, N., Pigny, P. (2018). Messenger RNA Life-Cycle in Cancer Cells: Emerging Role of Conventional and Non-Conventional RNA-Binding Proteins? Int J Mol Sci,19(3):650.doi: 10.3390/ijms19030650.

12. Moore, A.E., Chenette, D.M., Larkin, L.C.,Schneider, R.J. (2014). Physiological networks and disease functions of RNA-binding protein AUF1. Wiley Interdiscip Rev RNA,5(4):549-564.doi: 10.1002/wrna.1230.

13. Cao, H., Deterding, L.J., Blackshear, P.J. (2014). Identification of a major phosphopeptide in human tristetraprolin by phosphopeptide mapping and mass spectrometry. PLoS One,9(7):e100977.Doi:10.1371/journal.pone.0100977

14. Cao, H., Deterding, L.J., Blackshear, P.J. (2007). Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin. Expert Rev Proteomics,4(6):711-726.doi: 10.1586/14789450.4.6.711.

15. Raineri, I., Wegmueller, D., Gross, B., Certa, U., Moroni, C. (2004). Roles of AUF1 isoforms, HuR and BRF1 in ARE-dependent mRNA turnover studied by RNA interference. Nucleic Acids Res, 32(4):1279-1288.doi: 10.1093/nar/gkh282.

16. Srikantan, S., Gorospe, M. (2012). HuR function in disease. Front Biosci (Landmark Ed),17(1):189-205.doi: 10.2741/3921.

17. Tiedje, C., Diaz-Muñoz, M.D., Trulley, P., Ahlfors,H., Laaß,K., Blackshear,P.J., Turner,M., Gaestel,M. (2016). The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation. Nucleic Acids Res,44(15):7418-7440.doi: 10.1093/nar/gkw474.

18. Piecyk, M., Wax, S., Beck, A.R., Kedersha, N., Gupta, M., Maritim, B., Chen, S.,Gueydan, C., Kruys, V., Streuli, M.,Anderson, P. (2000). TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. Embo j,19(15):4154-4163.doi: 10.1093/emboj/19.15.4154.

19. Zhang,C., Fu,J., Zhou,Y. (2019). A Review in Research Progress Concerning m6A Methylation and Immunoregulation.Front Immunol,10:922.doi: 10.3389/fimmu.2019.00922.

20. Roignant, J.Y., Soller, M. (2017). m(6)A in mRNA: An Ancient Mechanism for Fine-Tuning Gene Expression. Trends Genet,33(6):380-390.doi: 10.1016/j.tig.2017.04.003.

21.Yang, Y., Fan, X., Mao, M., Song,X., Wu,P., Zhang,Y., Jin,Y., Yang,Y., Chen,L.L., Wang,Y., Wong,C.C.I., Xiao,X., Wang,Z. (2017). Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res,27(5):626-641.doi: 10.1038/cr.2017.31.

22. Abdelmohsen, K., Kuwano, Y., Kim, H.H., Gorospe, M. (2008). Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem,389(3):243-255. doi: 10.1515/BC.2008.022.

23. Ricciardi, L., Dal Col, J., Casolari, P., Memoli, D., Conti, V., Vatrella, A., Vonakis, B.M., Papi, A., Caramori, G., Stellato, C. (2018).Differential expression of RNA-binding proteins in bronchial epithelium of stable COPD patients. Int J Chron Obstruct Pulmon Dis,13:3173-3190. doi: 10.2147/COPD.S166284.

24. Ricciardi, L., Giurato, G., Memoli, D., Pietrafesa, M., Dal Col, J., Salvato, I., Nigro, A., Vatrella, A., Caramori, G., Casolaro, V., Stellato, C. (2020) Posttranscriptional Gene Regulatory Networks in Chronic Airway Inflammatory Diseases: In silico Mapping of RNA-Binding Protein Expression in Airway Epithelium. Front Immunol,11:579889. doi: 10.3389/fimmu.2020.579889.

25. Skerrett-Byrne, D.A., Bromfield, E.G., Murray, H.C., Jamaluddin, M.F.B., Jarnicki, A.G., Fricker, M., Essilfie, A.T., Jones, B., Haw, T.J., Hampsey, D., Anderson, A.L., Nixon, B., Scott, R.J., Wark, P.A.B., Dun, M.D., Hansbro, P.M. (2021). Time-resolved proteomic profiling of cigarette smoke-induced experimental chronic obstructive pulmonary disease. Respirology,26(10):960-973. doi:10.1111/resp.14111

26. Herranz, N., Gallage, S., Mellone, M., Wuestefeld,T., Klotz,S., Hanley,C.J., Raguz,S., Acosta,J.C., Innes,A.J., Banito,A., Georgilis,A., Montoya,A., Wolter,K., Dharmalingam,G., Faull,P., Carroll,T., Martínez-Barbera,J.P., Cutillas,P., Reisinger,F., Heikenwalder,M., Miller,R.A., Withers,D., Zender,L., Thomas,G.J., Gil,J. (2015). mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol,17(9):1205-1217.doi: 10.1038/ncb3225.

27. Eggert, M., Michel, J., Schneider, S., Bornfleth, H., Baniahmad, A., Fackelmayer, F.O., Schmidt, S., Renkawitz, R. (1997). The glucocorticoid receptor is associated with the RNA-binding nuclear matrix protein hnRNP U. J Biol Chem,272(45):28471-28478. doi: 10.1074/jbc.272.45.28471.

28.Ishmael, F.T., Fang, X., Houser, K.R., Pearce, K., Abdelmohsen, K., Zhan, M., Gorospe, M., Stellato, C. (2011). The human glucocorticoid receptor as an RNA-binding protein: global analysis of glucocorticoid receptor-associated transcripts and identification of a target RNA motif. J Immunol,186(2):1189-1198.doi: 10.4049/jimmunol.1001794.

29. Kandasamy, K., Joseph, K., Subramaniam, K., Raymond, J.R., Tholanikunnel, B.G. (2005). Translational control of beta2-adrenergic receptor mRNA by T-cell-restricted intracellular antigen-related protein. J Biol Chem,280(3):1931-1943.doi: 10.1074/jbc.M405937200.

30. Subramaniam, K., Kandasamy, K., Joseph, K., Spicer, E.K., Tholanikunnel, B.G. (2011). The 3'-untranslated region length and AU-rich RNA location modulate RNA-protein interaction and translational control of β2-adrenergic receptor mRNA. Mol Cell Biochem,352(1-2):125-141.doi: 10.1007/s11010-011-0747-z.

31. Blaxall, B.C., Port, J.D. (2000). Determination of mRNA stability and characterization of proteins interacting with adrenergic receptor mRNAs. Methods Mol Biol,126:453-465. doi: 10.1385/1-59259-684-3:453

32. Blaxall, B.C., Pellett, A.C., Wu, S.C., Pende, A., Port, J.D. (2000). Purification and characterization of beta-adrenergic receptor mRNA-binding proteins. J Biol Chem,275:4290-4297.doi: 10.1074/jbc.275.6.4290.

33. Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I., Filipowicz, W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell,125(6):1111-1124.doi: 10.1016/j.cell.2006.04.031.

34. Iadevaia, V., Gerber, A.P. (2015). Combinatorial Control of mRNA Fates by RNA-Binding Proteins and Non-Coding RNAs. Biomolecules,5(4):2207-2222. doi: 10.3390/biom5042207.

35. Guo, J., Wang, H., Jiang, S., Xia,J., Jin,S. (2017). The Cross-talk between Tristetraprolin and Cytokines in Cancer. Anticancer Agents Med Chem,17(11):1477-1486.doi: 10.2174/1871520617666170327155124.

36. Wang, H., Chen, Y., Guo, J., Shan, T., Deng, K., Chen, J., Cai, L., Zhou, H., Zhao, Q., Jin, S., Xia, J. (2018). Dysregulation of tristetraprolin and human antigen R promotes gastric cancer progressions partly by upregulation of the high-mobility group box 1. Sci Rep,8(1):7080.doi: 10.1038/s41598-018-25443-3.

37. Young, L.E., Sanduja, S., Bemis-Standoli, K., Pena, E.A., Price, R.L., Dixon, D.A. (2009) The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology,136(5):1669-1679. doi: 10.1053/j.gastro.2009.01.010.

38. Li, W., Li, X., Gao, L.N., You, C.G. (2020). Integrated Analysis of the Functions and Prognostic Values of RNA Binding Proteins in Lung Squamous Cell Carcinoma. Front Genet,11:185.doi:10.3389/fgene.2020.00185

39.Li, L., Yan, S., Zhang, H., Zhang,M., Huang,G., Chen,M. (2019). Interaction of hnRNP K with MAP 1B-LC1 promotes TGF-β1-mediated epithelial to mesenchymal transition in lung cancer cells. BMC Cancer,19:894.doi.org/10.1186/s12885-019-6119-x

40. Wang, J., Wang, B., Bi, J., Zhang, C. (2011). Cytoplasmic HuR expression correlates with angiogenesis, lymphangiogenesis, and poor outcome in lung cancer. Med Oncol,28 Suppl 1:S577-85.doi: 10.1007/s12032-010-9734-6.

41. Wang, J., Zhao, W., Guo, Y., Zhang, B., Xie, Q., Xiang, D., Gao, J., Wang, B., Chen, Z. (2009). The expression of RNA-binding protein HuR in non-small cell lung cancer correlates with vascular endothelial growth factor-C expression and lymph node metastasis. Oncology,76(6):420-429.doi: 10.1159/000216837.

42. Coelho, M.A., de Carné Trécesson, S., Rana, S., Zecchin,D., Moore,C., Molina-Arcas,M., East,P., Spencer-Dene,B., Nye,E., Barnouin,K., Snijders,A.P., Lai,W.S., Blackshear,P.J., Downward,J. (2017).Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity,47(6):1083-1099.e6.doi:10.1016/j.immuni.2017.11.016

43. Kudinov, A.E., Deneka, A., Nikonova, A.S., Beck, T.N., Ahn, Y.H., Liu, X., Martinez, C.F., Schultz, F.A., Reynolds, S., Yang, D.H., Cai, K.Q., Yaghmour, K.M., Baker, K.A., Egleston, B.L., Nicolas, E., Chikwem, A., Andrianov, G., Singh, S., Borghaei, H., Serebriiskii, I.G., Gibbons, D.L., Kurie, J.M., Golemis, E.A., Boumber, Y. (2016). Musashi-2 (MSI2) supports TGF-β signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis. Proc Natl Acad Sci U S A,113(25):6955-6960. doi: 10.1073/pnas.1513616113

44. Guan, G., Li, R., Tang, W., Liu, T., Su, Z., Wang, Y., Tan, J., Jiang, S., Wang, K. (2017). Expression of RNA-binding motif 10 is associated with advanced tumor stage and malignant behaviors of lung adenocarcinoma cancer cells. Tumour Biol,39(3):1010428317691740. doi: 10.1177/1010428317691740.

45. Zhao, J., Sun, Y., Huang, Y., Song, F., Huang, Z., Bao, Y., Zuo, J., Saffen, D., Shao, Z., Liu, W., Wang, Y. (2017). Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing. Sci Rep,7:40488. doi.org/10.1038/srep40488

46. Lafzi, A., Kazan, H. (2016). Inferring RBP-Mediated Regulation in Lung Squamous Cell Carcinoma. PLoS One,11(5):e0155354. Doi:10.1371/journal.pone.0155354

47. Pino, I., Pío, R., Toledo, G., Zabalegui, N., Vicent, S., Rey, N., Lozano, M.D., Torre, W., García-Foncillas, J., Montuenga, L.M. (2003). Altered patterns of expression of members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family in lung cancer. Lung Cancer,41(2):131-43.doi: 10.1016/s0169-5002(03)00193-4.

48. Loiselle, J.J., Roy, J.G., Sutherland, L.C. (2016). RBM5 reduces small cell lung cancer growth, increases cisplatin sensitivity and regulates key transformation-associated pathways. Heliyon, 2(6):e00204.doi:10.1371/journal.pone.0180258

49. Caramori, G., Adcock, I.M., Casolari, P., Ito, K., Jazrawi, E., Tsaprouni, L., Villetti, G., Civelli, M., Carnini, C., Fan Chung, K., Barnes, P.J., Papi, A. (2011). Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer. Thorax,66(6):521-527.doi: 10.1136/thx.2010.156448.

50. Houghton, A.M. (2013). Mechanistic links between COPD and lung cancer. Nat Rev Cancer, 13(4):233-245.doi: 10.1038/nrc3477.

51. Yang, J., Liu, M., Hong, D., Zeng,M., Zhang,X. (2021). The Paradoxical Role of Cellular Senescence in Cancer. Front Cell Dev Biol,9:722205.doi: 10.3389/fcell.2021.722205.

52. Mahmood, M.Q., Walters, E.H., Shukla, S.D., Weston, S., Muller, H.K., Ward, C., Sohal, S.S. (2017). β-catenin, Twist and Snail: Transcriptional regulation of EMT in smokers and COPD, and relation to airflow obstruction. Sci Rep,7:10832. doi.org/10.1038/s41598-017-11375-x

53. Mahmood, M.Q., Shukla, S.D., Ward, C., Walters, E.H. (2021). The Underappreciated Role of Epithelial Mesenchymal Transition in Chronic Obstructive Pulmonary Disease and Its Strong Link to Lung Cancer. Biomolecules,11(9):1394.doi:10.3390/biom11091394

54. Dong, R., Lu, J.G., Wang, Q., He, X.L., Chu, Y.K., Ma, Q.J. (2007). Stabilization of Snail by HuR in the process of hydrogen peroxide induced cell migration. Biochem Biophys Res Commun,356(1):318-321.doi: 10.1016/j.bbrc.2007.02.145.

55. AlAhmari, M.M., Al-Khalaf, H.H., Al-Mohanna, F.H., Ghebeh, H., Aboussekhra, A. (2020). AUF1 promotes stemness in human mammary epithelial cells through stabilization of the EMT transcription factors TWIST1 and SNAIL1. Oncogenesis,9:70. doi.org/10.1038/s41389-020-00255-1

56. Van Niel, G., D'Angelo, G., Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol,19(4):213-228.doi: 10.1038/nrm.2017.125.

57. Liu, S., Zhan, Y., Luo, J., Feng,J., Lu,J., Zheng,H., Wen,Q., Fan,S. (2019). Roles of exosomes in the carcinogenesis and clinical therapy of non-small cell lung cancer. Biomed Pharmacother,111:338-346.doi: 10.1016/j.biopha.2018.12.088.

58. Liu, Z., Yan, J., Tong, L., Liu,S., Zhang,Y. (2022). The role of exosomes from BALF in lung disease. J Cell Physiol,237(1):161-168.doi: 10.1002/jcp.30553.

59. O'Farrell, H.E., Bowman, R.V., Fong, K.M., Yang, I.A. (2021). Plasma Extracellular Vesicle miRNAs Can Identify Lung Cancer, Current Smoking Status, and Stable COPD. Int J Mol Sci,22(11):5803.doi: 10.3390/ijms22115803.

60. O'Brien, K., Breyne, K., Ughetto, S., Laurent,L.C., Breakefield,X.O. (2020). RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol,21:585-606.

61. Jimbo, M., Blanco, F.F., Huang, Y.H., Telonis,A.G., Screnci,B.A., Cosma,G.L., Alexeev,V., Gonye,G.E., Yeo,C.J., Sawicki,J.A., Winter,J.M., Brody,J.R. (2015). Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells. Oncotarget,6(10):27312-27331.doi: 10.1038/s41580-020-0251-y

62. Lal, A., Mazan-Mamczarz, K., Kawai, T., Yang, X., Martindale, J.L., Gorospe, M. (2004). Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J,23(15):3092-3102. doi: 10.1038/sj.emboj.7600305.

63.Mazan-Mamczarz, K., Galbán, S., López de Silanes, I., Martindale, J.L., Atasoy, U., Keene, J.D., Gorospe, M. (2003). RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci U S A,100(14):8354-8359. doi: 10.1073/pnas.1432104100.

64. Mazan-Mamczarz, K,.Lal, A., Martindale, J.L., Kawai, T., Gorospe, M. (2006). Translational repression by RNA-binding protein TIAR. Mol Cell Biol,26(7):2716-2727. doi:10.1128/MCB.26.7.2716-2727.2006

65. López de Silanes, I., Galbán, S., Martindale, J.L., Yang, X., Mazan-Mamczarz, K., Indig, F.E., Falco, G., Zhan, M., Gorospe, M. (2005). Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. Mol Cell Biol, 25(21):9520-9531. doi: 10.1128/MCB.25.21.9520-9531.2005.

66. Paschoud, S., Dogar, A.M., Kuntz, C., Grisoni-Neupert, B., Richman, L., Kühn, L.C. (2006). Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol Cell Biol,26(22):8228-8241.doi: 10.1128/MCB.01155-06.

67. Zhou, H., Jarujaron, S., Gurley, E.C., Chen, L., Ding, H., Studer, E., Pandak, W.M. Jr., Hu, W., Zou, T., Wang, J.Y., Hylemon, P.B. (2007). HIV protease inhibitors increase TNF-alpha and IL-6 expression in macrophages: involvement of the RNA-binding protein HuR. Atherosclerosis, 195(1):e134-43.doi: 10.1016/j.atherosclerosis.2007.04.008.

68. Patil, C.S., Liu, M., Zhao, W., Coatney, D.D., Li, F., VanTubergen, E.A., D'Silva, N.J., Kirkwood, K.L. (2008). Targeting mRNA stability arrests inflammatory bone loss. Mol Ther,16(10):1657-1664.doi: 10.1038/mt.2008.163.

69. Pont, A.R., Sadri, N., Hsiao, S.J., Smith, S.,Schneider, R.J. (2012). mRNA decay factor AUF1 maintains normal aging, telomere maintenance, and suppression of senescence by activation of telomerase transcription. Mol Cell, 47(1):5-15.doi: 10.1016/j.molcel.2012.04.019.

70. Chen, J., Patial, S. (2021). Loss of RNA Binding Protein, ZFP36L1, promotes EMT in hepatocellular cancer cells by regulating EMT-inducing transcription factor ZEB2. The FASEB Journal,35.Doi:10.1096/fasebj.2021.35.S1.04347

71. Sneezum, L., Eislmayr, K., Dworak, H., Sedlyarov,V., Le Heron,A., Ebner,F., Fischer,I., Iwakura,Y., Kovarik,P. (2020). Context-Dependent IL-1 mRNA-Destabilization by TTP Prevents Dysregulation of Immune Homeostasis Under Steady State Conditions. Front Immunol,11:1398.doi: 10.3389/fimmu.2020.01398.

72. Sun, J., Gu, X., Wu, N., Zhang, P., Liu, Y., Jiang, S. (2018). Human antigen R enhances the epithelial-mesenchymal transition via regulation of ZEB-1 in the human airway epithelium. Respir Res,19:109. doi:10.1186/s12931-018-0805-0

73. Ouhara, K., Munenaga, S., Kajiya, M., Takeda,K., Matsuda,S., Sato,Y., Hamamoto,Y., Iwata,T., Yamasaki,S., Akutagawa,K., Mizuno,N., Fujita,T., Sugiyama,E., Kurihara,H. (2018). The induced RNA-binding protein, HuR, targets 3'-UTR region of IL-6 mRNA and enhances its stabilization in periodontitis. Clin Exp Immunol,192(3):325-336.doi: 10.1111/cei.13110.

74. Lujan, D.A., Ochoa, J.L., Hartley, R.S. (2018). Cold-inducible RNA binding protein in cancer and inflammation. Wiley Interdiscip Rev RNA,9(12):10.1002/wrna.1462.doi:10.18632/aging.203139

75. Qiu, L.Q., Lai, W.S., Bradbury, A., Zeldin,D.C., Blackshear,P.J. (2015).Tristetraprolin (TTP) coordinately regulates primary and secondary cellular responses to proinflammatory stimuli. J Leukoc Biol,97(4):723-736. doi: 10.1189/jlb.3A0214-106R.

76. Sadri, N., Schneider, R.J. (2009). Auf1/Hnrnpd-deficient mice develop pruritic inflammatory skin disease. J Invest Dermatol,129(3):657-670. doi: 10.1038/jid.2008.298.

77. Li, S., Zhang, H.Y., Du, Z.X., Li, C., An, M.X., Zong, Z.H., Liu, B.Q., Wang, H.Q. (2016). Induction of epithelial-mesenchymal transition (EMT) by Beclin 1 knockdown via posttranscriptional upregulation of ZEB1 in thyroid cancer cells. Oncotarget,7(43):70364-70377.doi:10.18632/oncotarget.12217

Chenette, D.M., Cadwallader, A.B., Antwine, T.L., Larkin,L.C., Wang,J., Olwin,B.B., Schneider,R.J. (2016). Targeted mRNA Decay by RNA Binding Protein AUF1 Regulates Adult Muscle Stem Cell Fate, Promoting Skeletal Muscle Integrity. Cell Rep,16(5):1379-1390.doi: 10.1016/j.celrep.2016.06.095.




DOI: https://doi.org/10.13129/1828-6550/APMB.110.2.2022.SD1

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Francesco Nucera, Ilaria Salvato, Luca Ricciardi, Annunziata Nigro, Jessica Dal Col, Francesco Monaco, Antonio Ieni, Guido Fadda, Giovanni Tuccari, Cristiana Stellato, Gaetano Caramori

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.