The anti-proliferative effect of a bergamot juice extract and its flavanones in leukemic THP-1 cell line involves SIRT2

Alessandro Maugeri, Caterina Russo, Laura Musumeci, Michele Navarra

Abstract


Plant kingdom provides a wide plethora of remedies which can be exploited to treat prevent and manage human ailments, among which cancer. In these regards, there is consistent supporting evidence of the beneficial properties of Citrus fruits, which are consumed worldwide. Among these, pharmacological effects of Citrus bergamia Risso (bergamot) have been extensively demonstrated, including anticancer ones, which are due to its elevated flavonoid content. Recently, the flavonoid-rich extract of bergamot juice (BJe) its main flavanones have been investigated for their anti-leukemic activity in THP-1 cells, a model of acute myeloid leukaemia (AML). Specifically, it was shown that BJe and its main flavanones were able to hamper viability of leukemic cells, along with blocking cell cycle in triggering apoptosis. Noteworthy, it has been suggested that in AML there is an over-expression of SIRT2, an enzyme belonging to the family of sirtuins. Interestingly, it has been shown that BJe and its main flavanones can inhibit the deacetylase activity of SIRT2 in the isolated enzyme and in THP-1 cells, where they also reduced its gene expression. Moreover, docking simulations clarified that the main flavanones, namely naringenin and hesperetin, were able to interact with the catalytic core of SIRT2 in a similar manner as the synthetic inhibitor SirReal2. These results support the anti-leukemic potentiality of BJe, along with its main flavanones, highlighting that SIRT2 is involved in these effects.

Keywords


Citrus bergamia; bergamot; flavonoids; cancer; acute myeloid leukaemia; sirtuins; SIRT2

Full Text:

PDF

References


1. Newman, D.J., Cragg, G.M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod. 83(3), 770-803. doi:10.1021/acs.jnatprod.9b01285

2. Caesar, L.K., Cech, N.B. (2019). Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep. 36(6), 869-888. doi:10.1039/c9np00011a

3. Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., Bezirtzoglou, E. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms. 9(10). doi:10.3390/microorganisms9102041

4. Efferth, T., Koch, E. (2011). Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr Drug Targets. 12(1), 122-132. doi:10.2174/138945011793591626

5. Hosseinzadeh, E., Hassanzadeh, A., Marofi, F., Alivand, M.R., Solali, S. (2020). Flavonoid-Based Cancer Therapy: An Updated Review. Anticancer Agents Med Chem. 20(12), 1398-1414. doi:10.2174/1871520620666200423071759

6. Wang, Y., Liu, X.J., Chen, J.B., Cao, J.P., Li, X., Sun, C.D. (2022). Citrus flavonoids and their antioxidant evaluation. Crit Rev Food Sci Nutr. 62(14), 3833-3854. doi:10.1080/10408398.2020.1870035

7. Serafini, M., Peluso, I., Raguzzini, A. (2010). Flavonoids as anti-inflammatory agents. Proc Nutr Soc. 69(3), 273-278. doi:10.1017/S002966511000162X

8. Badshah, S.L., Faisal, S., Muhammad, A., Poulson, B.G., Emwas, A.H., Jaremko, M. (2021). Antiviral activities of flavonoids. Biomed Pharmacother. 140, 111596. doi:10.1016/j.biopha.2021.111596

9. Kumar, S., Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal. 2013, 162750. doi:10.1155/2013/162750

10. Abotaleb, M., Samuel, S.M., Varghese, E., Varghese, S., Kubatka, P., Liskova, A., Busselberg, D. (2018). Flavonoids in Cancer and Apoptosis. Cancers (Basel). 11(1). doi:10.3390/cancers11010028

11. Slika, H., Mansour, H., Wehbe, N., Nasser, S.A., Iratni, R., Nasrallah, G., Shaito, A., Ghaddar, T., Kobeissy, F., Eid, A.H. (2022). Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother. 146, 112442. doi:10.1016/j.biopha.2021.112442

12. Hazafa, A., Rehman, K.U., Jahan, N., Jabeen, Z. (2020). The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells. Nutr Cancer. 72(3), 386-397. doi:10.1080/01635581.2019.1637006

13. Hwang, S.L., Shih, P.H., Yen, G.C. (2012). Neuroprotective effects of citrus flavonoids. J Agric Food Chem. 60(4), 877-885. doi:10.1021/jf204452y

14. Miles, E.A., Calder, P.C. (2021). Effects of Citrus Fruit Juices and Their Bioactive Components on Inflammation and Immunity: A Narrative Review. Front Immunol. 12, 712608. doi:10.3389/fimmu.2021.712608

15. Bae, J.M., Lee, E.J., Guyatt, G. (2008). Citrus fruits intake and prostate cancer risk: a quantitative systematic review. J Prev Med Public Health. 41(3), 159-164. doi:10.3961/jpmph.2008.41.3.159

16. Hedelin, M., Skokic, V., Wilderang, U., Ahlin, R., Bull, C., Sjoberg, F., Dunberger, G., Bergmark, K., Stringer, A., Steineck, G. (2019). Intake of citrus fruits and vegetables and the intensity of defecation urgency syndrome among gynecological cancer survivors. PloS one. 14(1), e0208115. doi:10.1371/journal.pone.0208115

17. Zhao, W., Liu, L., Xu, S. (2018). Intakes of citrus fruit and risk of esophageal cancer: A meta-analysis. Medicine (Baltimore). 97(13), e0018. doi:10.1097/MD.0000000000010018

18. Salerno, R., Casale, F., Calandruccio, C., Procopio, A. (2016). Characterization of flavonoids in Citrus bergamia (Bergamot) polyphenolic fraction by liquid chromatography–high resolution mass spectrometry (LC/HRMS). PharmaNutrition. 4, S1-S7.

19. Delle Monache, S., Sanita, P., Trapasso, E., Ursino, M.R., Dugo, P., Russo, M., Ferlazzo, N., Calapai, G., Angelucci, A., Navarra, M. (2013). Mechanisms underlying the anti-tumoral effects of Citrus Bergamia juice. PloS one. 8(4), e61484. doi:10.1371/journal.pone.0061484

20. Ferlazzo, N., Cirmi, S., Russo, M., Trapasso, E., Ursino, M.R., Lombardo, G.E., Gangemi, S., Calapai, G., Navarra, M. (2016). NF-kappaB mediates the antiproliferative and proapoptotic effects of bergamot juice in HepG2 cells. Life sciences. 146, 81-91. doi:10.1016/j.lfs.2015.12.040

21. Visalli, G., Ferlazzo, N., Cirmi, S., Campiglia, P., Gangemi, S., Pietro, A.D., Calapai, G., Navarra, M. (2014). Bergamot juice extract inhibits proliferation by inducing apoptosis in human colon cancer cells. Anticancer Agents Med Chem. 14(10), 1402-1413.

22. Delle Monache, S., Sanità, P., Trapasso, E., Ursino, M.R., Dugo, P., Russo, M., Ferlazzo, N., Calapai, G., Angelucci, A., Navarra, M. (2013). Mechanisms underlying the anti-tumoral effects of Citrus Bergamia juice. PloS one. 8(4), e61484. doi:10.1371/journal.pone.0061484

23. Navarra, M., Ursino, M.R., Ferlazzo, N., Russo, M., Schumacher, U., Valentiner, U. (2014). Effect of Citrus bergamia juice on human neuroblastoma cells in vitro and in metastatic xenograft models. Fitoterapia. 95, 83-92. doi:10.1016/j.fitote.2014.02.009

24. Visalli, G., Ferlazzo, N., Cirmi, S., Campiglia, P., Gangemi, S., Di Pietro, A., Calapai, G., Navarra, M. (2014). Bergamot juice extract inhibits proliferation by inducing apoptosis in human colon cancer cells. Anticancer Agents Med Chem. 14(10), 1402-1413. doi:10.2174/1871520614666140829120530

25. Navarra, M., Femia, A.P., Romagnoli, A., Tortora, K., Luceri, C., Cirmi, S., Ferlazzo, N., Caderni, G. (2020). A flavonoid-rich extract from bergamot juice prevents carcinogenesis in a genetic model of colorectal cancer, the Pirc rat (F344/NTac-Apc(am1137)). Eur J Nutr. 59(3), 885-894. doi:10.1007/s00394-019-01948-z

26. Shimony, S., Stahl, M., Stone, R.M. (2023). Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 98(3), 502-526. doi:10.1002/ajh.26822

27. Miranda-Filho, A., Piñeros, M., Ferlay, J., Soerjomataram, I., Monnereau, A., Bray, F. (2018). Epidemiological patterns of leukaemia in 184 countries: a population-based study. The Lancet Haematology. 5(1), e14-e24. doi:10.1016/S2352-3026(17)30232-6

28. Shallis, R.M., Wang, R., Davidoff, A., Ma, X., Zeidan, A.M. (2019). Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 36, 70-87. doi:10.1016/j.blre.2019.04.005

29. Liu, H. (2021). Emerging agents and regimens for AML. J Hematol Oncol. 14(1), 49. doi:10.1186/s13045-021-01062-w

30. Lane, A.A., Chabner, B.A. (2009). Histone deacetylase inhibitors in cancer therapy. J Clin Oncol. 27(32), 5459-5468. doi:10.1200/JCO.2009.22.1291

31. Chalkiadaki, A., Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nat Rev Cancer. 15(10), 608-624. doi:10.1038/nrc3985

32. Chen, G., Huang, P., Hu, C. (2020). The role of SIRT2 in cancer: A novel therapeutic target. Int J Cancer. 147(12), 3297-3304. doi:10.1002/ijc.33118

33. Deng, A., Ning, Q., Zhou, L., Liang, Y. (2016). SIRT2 is an unfavorable prognostic biomarker in patients with acute myeloid leukemia. Sci Rep. 6, 27694. doi:10.1038/srep27694

34. San José-Enériz, E., Gimenez-Camino, N., Agirre, X., Prosper, F. (2019). HDAC Inhibitors in Acute Myeloid Leukemia. Cancers. 11(11), 1794.

35. Heger, V., Tyni, J., Hunyadi, A., Horakova, L., Lahtela-Kakkonen, M., Rahnasto-Rilla, M. (2019). Quercetin based derivatives as sirtuin inhibitors. Biomed Pharmacother. 111, 1326-1333. doi:10.1016/j.biopha.2019.01.035

36. Maugeri, A., Russo, C., Musumeci, L., Lombardo, G.E., De Sarro, G., Barreca, D., Cirmi, S., Navarra, M. (2022). The Anticancer Effect of a Flavonoid-Rich Extract of Bergamot Juice in THP-1 Cells Engages the SIRT2/AKT/p53 Pathway. Pharmaceutics. 14(10). doi:10.3390/pharmaceutics14102168

37. Chen, Y.C., Shen, S.C., Lin, H.Y. (2003). Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoids. Biochem Pharmacol. 66(7), 1139-1150. doi:10.1016/s0006-2952(03)00455-6

38. Russo, C., Maugeri, A., De Luca, L., Gitto, R., Lombardo, G.E., Musumeci, L., De Sarro, G., Cirmi, S., Navarra, M. (2022). The SIRT2 Pathway Is Involved in the Antiproliferative Effect of Flavanones in Human Leukemia Monocytic THP-1 Cells. Biomedicines. 10(10). doi:10.3390/biomedicines10102383

39. Park, J.H., Jin, C.Y., Lee, B.K., Kim, G.Y., Choi, Y.H., Jeong, Y.K. (2008). Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. Food Chem Toxicol. 46(12), 3684-3690. doi:10.1016/j.fct.2008.09.056

40. Lin, C.Y., Chen, Y.H., Huang, Y.C. (2023). Hesperetin Induces Autophagy and Delayed Apoptosis by Modulating the AMPK/Akt/mTOR Pathway in Human Leukemia Cells In Vitro. Curr Issues Mol Biol. 45(2), 1587-1600. doi:10.3390/cimb45020102

41. Peck, B., Chen, C.Y., Ho, K.K., Di Fruscia, P., Myatt, S.S., Coombes, R.C., Fuchter, M.J., Hsiao, C.D., Lam, E.W. (2010). SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther. 9(4), 844-855. doi:10.1158/1535-7163.MCT-09-0971

42. Roshdy, E., Mustafa, M., Shaltout, A.E., Radwan, M.O., Ibrahim, M.A.A., Soliman, M.E., Fujita, M., Otsuka, M., Ali, T.F.S. (2021). Selective SIRT2 inhibitors as promising anticancer therapeutics: An update from 2016 to 2020. Eur J Med Chem. 224, 113709. doi:10.1016/j.ejmech.2021.113709

43. Wang, T., Xu, Z., Lu, Y., Shi, J., Liu, W., Zhang, C., Jiang, Z., Qi, B., Bai, L. (2019). Recent Progress on the Discovery of Sirt2 Inhibitors for the Treatment of Various Cancers. Curr Top Med Chem. 19(12), 1051-1058. doi:10.2174/1568026619666190510103416




DOI: https://doi.org/10.13129/1828-6550/APMB.112.2.2024.SD1

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Alessandro Maugeri, Caterina Russo, Laura Musumeci, Michele Navarra

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.