A Critical Evaluation of the Claim that the Amygdala's Primary Function in Social Perception is in Underpinning the Perception and Experience of Fear
Abstract
Humans are inherently social and make complex inferences regarding others’ emotional states. Research examining the neurological basis of social perception has implicated the amygdala in the perception and experience of fear.
Keywords
Full Text:
PDFReferences
Adams, R. B., Gordon, H. L., Baird, A. A., Ambady, N., & Kleck, R. E. (2003). Effects of gaze on amygdala sensitivity to anger and fear faces. Science, 300(5625), 1536-1536. https://doi.org/10.1126/science.1082244
Adolphs, R. (2008). Fear, faces, and the human amygdala. Current opinion in neurobiology, 18(2), 166-172. https://doi.org/10.1016/j.conb.2008.06.006
Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191(1), 42-61. https://doi.org/10.1111/j.1749-6632.2010.05445.x
Adolphs, R., & Spezio, M. (2006). Role of the amygdala in processing visual social stimuli. Progress in brain research, 156, 363-378. https://doi.org/10.1016/S0079-6123(06)56020-0
Adolphs, R., Damasio, H., Tranel, D., & Damasio, A. R. (1996). Cortical systems for the recognition of emotion in facial expressions. Journal of neuroscience, 16(23), 7678-7687. https://doi.org/10.1523/JNEUROSCI.16-23-07678.1996
Adolphs, R., Gosselin, F., Buchanan, T. W., Tranel, D., Schyns, P., & Damasio, A. R. (2005). A mechanism for impaired fear recognition after amygdala damage. Nature, 433(7021), 68-72. https://doi.org/10.1038/nature03086
Adolphs, R., Russell, J. A., & Tranel, D. (1999). A role for the human amygdala in recognizing emotional arousal from unpleasant stimuli. Psychological Science, 10(2), 167-171. https://doi.org/10.1111/1467-9280.00126
Adolphs, R., Tranel, D., & Damasio, A. R. (1998). The human amygdala in social judgment. Nature, 393(6684), 470–474. https://doi.org/10.1038/30982
Adolphs, R., Tranel, D., & Damasio, A. R. (2003). Dissociable neural systems for recognizing emotions. Brain and cognition, 52(1), 61-69. https://doi.org/10.1016/S0278-2626(03)00009-5
Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372(6507), 669–672 (1994). https://doi.org/10.1038/372669a0
Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature, 411(6835), 305–309 (2001). https://doi.org/10.1038/35077083
Atkinson, A. P., Heberlein, A. S., & Adolphs, R. (2007). Spared ability to recognise fear from static and moving whole-body cues following bilateral amygdala damage. Neuropsychologia, 45(12), 2772-2782. https://doi.org/10.1016/j.neuropsychologia.2007.04.019
Baas, D., Aleman, A., & Kahn, R. S. (2004). Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Research Reviews, 45(2), 96-103. https://doi.org/10.1016/j.brainresrev.2004.02.004
Bach, D. R., Hurlemann, R., & Dolan, R. J. (2015). Impaired threat prioritisation after selective bilateral amygdala lesions. Cortex, 63, 206-213. https://doi.org/10.1016/j.cortex.2014.08.017
Barrett, L. F. (2018). Seeing fear: it’s all in the eyes? Trends in neurosciences, 41(9), 559-563. https://doi.org/10.1016/j.tins.2018.06.009
Bijanki, K. R., Kovach, C. K., McCormick, L. M., Kawasaki, H., Dlouhy, B. J., Feinstein, J., & Howard III, M. A. (2014). Case report: stimulation of the right amygdala induces transient changes in affective bias. Brain stimulation, 7(5), 690-693. https://doi.org/10.1016/j.brs.2014.05.005
Birbaumer, N., Grodd, W., Diedrich, O., Klose, U., Erb, M., Lotze, M., & Flor, H. (1998). fMRI reveals amygdala activation to human faces in social phobics. Neuroreport, 9(6), 1223-1226.
Engell, A. D., Haxby, J. V., & Todorov, A. (2007). Implicit trustworthiness decisions: automatic coding of face properties in the human amygdala. Journal of cognitive neuroscience, 19(9), 1508-1519. https://doi.org/10.1162/jocn.2007.19.9.1508
Etkin, A., Prater, K. E., Schatzberg, A. F., Menon, V., & Greicius, M. D. (2009). Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Archives of general psychiatry, 66(12), 1361-1372. https://doi.org/10.1001/archgenpsychiatry.2009.104
Feinstein, J. S., Adolphs, R., Damasio, A., & Tranel, D. (2011). The human amygdala and the induction and experience of fear. Current biology, 21(1), 34-38. https://doi.org/10.1016/j.cub.2010.11.042
Feinstein, J. S., Buzza, C., Hurlemann, R., Follmer, R. L., Dahdaleh, N. S., Coryell, W. H., & Wemmie, J. A. (2013). Fear and panic in humans with bilateral amygdala damage. Nature neuroscience, 16(3), 270–272 (2013). https://doi.org/10.1038/nn.3323
Graham, R., Devinsky, O., & LaBar, K. S. (2007). Quantifying deficits in the perception of fear and anger in morphed facial expressions after bilateral amygdala damage. Neuropsychologia, 45(1), 42-54. https://doi.org/10.1016/j.neuropsychologia.2006.04.021
Grezes, J., Pichon, S., & De Gelder, B. (2007). Perceiving fear in dynamic body expressions. Neuroimage, 35(2), 959-967. https://doi.org/10.1016/j.neuroimage.2006.11.030
Halgren, E., Walter, R. D., Cherlow, D. G., & Crandall, P. H. (1978). Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain, 101(1), 83-115. https://doi.org/10.1093/brain/101.1.83
Harris, R. J., Young, A. W., & Andrews, T. J. (2012). Morphing between expressions dissociates continuous from categorical representations of facial expression in the human brain. Proceedings of the National Academy of Sciences, 109(51), 21164-21169. https://doi.org/10.1073/pnas.1212207110
Harrison, L. A., Hurlemann, R., & Adolphs, R. (2015). An enhanced default approach bias following amygdala lesions in humans. Psychological science, 26(10), 1543-1555. https://doi.org/10.1177/0956797615583804
Khalsa, S. S., Feinstein, J. S., Li, W., Feusner, J. D., Adolphs, R., & Hurlemann, R. (2016). Panic anxiety in humans with bilateral amygdala lesions: pharmacological induction via cardiorespiratory interoceptive pathways. Journal of Neuroscience, 36(12), 3559-3566. https://doi.org/10.1523/JNEUROSCI.4109-15.2016
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual review of neuroscience, 23(1), 155-184. https://doi.org/10.1146/annurev.neuro.23.1.155
Liddell, B. J., Brown, K. J., Kemp, A. H., Barton, M. J., Das, P., Peduto, A., & Williams, L. M. (2005). A direct brainstem–amygdala–cortical ‘alarm’system for subliminal signals of fear. Neuroimage, 24(1), 235-243. https://doi.org/10.1016/j.neuroimage.2004.08.016
Meletti, S., Cantalupo, G., Benuzzi, F., Mai, R., Tassi, L., Gasparini, E., & Nichelli, P. (2012). Fear and happiness in the eyes: An intra-cerebral event-related potential study from the human amygdala. Neuropsychologia, 50(1), 44-54. https://doi.org/10.1016/j.neuropsychologia.2011.10.020
Méndez-Bértolo, C., Moratti, S., Toledano, R., Lopez-Sosa, F., Martínez-Alvarez, R., Mah, Y. H., & Strange, B. A. (2016). A fast pathway for fear in human amygdala. Nature neuroscience, 19(8), 1041–1049 (2016). https://doi.org/10.1038/nn.4324
Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., & Dolan, R. J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383(6603), 812–815. https://doi.org/10.1038/383812a0
Myles, L. (2021a). The Emerging Role of Computational Psychopathology in Clinical Psychology. Mediterranean Journal of Clinical Psychology, 9(1). https://doi.org/10.6092/2282-1619/mjcp-2895
Myles, L. (2021b). Using Prediction Error to Account for the Pervasiveness of Mood Congruent Thoughts. Mediterranean Journal of Clinical Psychology, 9(2). https://doi.org/10.13129/2282-1619/mjcp-3130
Myles, L., & Merlo, E. (2021). Alexithymia and physical outcomes in psychosomatic subjects: a cross-sectional study. Journal of Mind and Medical Sciences, 8(1), 76-85. https://scholar.valpo.edu/jmms/vol8/iss1/12
Myles, L., Connolly, J., & Stanulewicz, N. (2020). The Mediating Role of Perceived Control and Desire for Control in the Relationship between Personality and Depression. Mediterranean Journal of Clinical Psychology, 8(3). https://doi.org/10.6092/2282-1619/mjcp-2589
Myles, L., Merlo, E., & Obele, A. (2021). Desire for Control Moderates the Relationship between Perceived Control and Depressive Symptomology. Journal of Mind and Medical Sciences, 8(2), 229-305. https://doi.org/10.22543/7674.82.P299305
Rutishauser, U., Mamelak, A. N., & Adolphs, R. (2015). The primate amygdala in social perception–insights from electrophysiological recordings and stimulation. Trends in neurosciences, 38(5), 295-306. https://doi.org/10.1016/j.tins.2015.03.001
Sander, K., & Scheich, H. (2001). Auditory perception of laughing and crying activates human amygdala regardless of attentional state. Cognitive Brain Research, 12(2), 181-198. https://doi.org/10.1016/S0926-6410(01)00045-3
Scott, S. K., Young, A. W., Calder, A. J., Hellawell, D. J., Aggleton, J. P., & Johnsons, M. (1997). Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature, 385(6613), 254–257 (1997). https://doi.org/10.1038/385254a0
Spezio, M. L., Huang, P. Y. S., Castelli, F., & Adolphs, R. (2007). Amygdala damage impairs eye contact during conversations with real people. Journal of Neuroscience, 27(15), 3994-3997. https://doi.org/10.1523/JNEUROSCI.3789-06.2007
Sprengelmeyer, R., Young, A. W., Schroeder, U., Grossenbacher, P. G., Federlein, J., Buttner, T., & Przuntek, H. (1999). Knowing no fear. Proceedings of the Royal Society of London B: Biological Sciences, 266(1437), 2451-2456. https://doi.org/10.1098/rspb.1999.0945
Todorov, A., Said, C. P., Engell, A. D., & Oosterhof, N. N. (2008). Understanding evaluation of faces on social dimensions. Trends in cognitive sciences, 12(12), 455-460. https://doi.org/10.1016/j.tics.2008.10.001
Tranel, D., Gullickson, G., Koch, M., & Adolphs, R. (2006). Altered experience of emotion following bilateral amygdala damage. Cognitive neuropsychiatry, 11(3), 219-232. https://doi.org/10.1080/13546800444000281
Van de Vliet, L., Jastorff, J., Huang, Y. A., Van Paesschen, W., Vandenbulcke, M., & Van den Stock, J. (2018). Anterior temporal lobectomy impairs neural classification of body emotions in right superior temporal sulcus and reduces emotional enhancement in distributed brain areas without affecting behavioral classification. Journal of Neuroscience, 38(43), 9263-9274. https://doi.org/10.1523/JNEUROSCI.0634-18.2018
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature neuroscience, 6(6), 624-631. https://doi.org/10.1038/nn1057
Wang, S., Tudusciuc, O., Mamelak, A. N., Ross, I. B., Adolphs, R., & Rutishauser, U. (2014). Neurons in the human amygdala selective for perceived emotion. Proceedings of the National Academy of Sciences, 111(40), 201323342. https://doi.org/10.1073/pnas.1323342111
Wang, S., Yu, R., Tyszka, J. M., Zhen, S., Kovach, C., Sun, S., & Mamelak, A. N. (2017). The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nature Communications, 8, 14821. https://doi.org/10.1038/ncomms14821
DOI: https://doi.org/10.13129/2282-1619/mjcp-3319
Refbacks
- There are currently no refbacks.