Adaptive Working Memory Training and Functional Outcomes Post-Stroke: A Randomized Trial
Abstract
Background: Cognitive deficits following ischemic stroke significantly impair functional independence, particularly in instrumental activities of daily living. Previous research highlights working memory as a key target for rehabilitation, but the effectiveness of adaptive working memory training in improving functional outcomes remains underexplored. This study draws on the theoretical framework linking cognitive reserve and neuroplasticity to post-stroke recovery, hypothesizing that targeted cognitive interventions can enhance both working memory and instrumental activities of daily living performance.
Materials and Methods: A randomized controlled trial was conducted with 32 participants who experienced ischemic stroke. Participants were randomly assigned to an intervention group (n=16), receiving adaptive working memory training, or an active control group (n=16), engaged in non-adaptive cognitive activities. Independent variables included the type of intervention (adaptive vs. standard), while dependent variables measured instrumental activities of daily living (Lawton-Brody Scale) and working memory (Working Memory Questionnaire, Working Memory Index, Corsi Block Tapping Test). The intervention entailed 25 sessions over 12 weeks, tailored to participant performance to maximize cognitive engagement.
Results: The intervention group demonstrated a significant improvement in Working Memory Index compared to the control group, suggesting a stronger effect of adaptive training on cognitive outcomes. However, no significant differences were observed in instrumental activities of daily living performance between groups, raising questions about the transferability of cognitive gains to functional tasks.
Discussion: These findings support the theoretical premise that adaptive working memory training enhances cognitive performance post-stroke but highlight limitations in its direct impact on functional independence. Future research should explore the conditions under which such interventions effectively translate cognitive improvements into practical gains, considering factors such as intervention duration, intensity, and individual differences (e.g., baseline performance, motivation, and genetic predispositions). The study underscores the need for refined intervention designs to bridge the gap between cognitive training and functional rehabilitation outcomes.
Clinical Trial registration: RIDIE-STUDY-ID-5e61da9608f23.
Keywords
Full Text:
PDFReferences
Au, J., Gibson, B. C., Bunarjo, K., Buschkuehl, M., & Jaeggi, S. M. (2020). Quantifying the difference between active and passive control groups in cognitive interventions using two meta-analytical approaches. Journal of Cognitive Enhancement, 4(2), 192–210. https://doi.org/10.1007/s41465-020-00164-6
Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic Bulletin & Review, 22(2), 366–377. https://doi.org/10.3758/s13423-014-0699-x
Bergman-Nutley, S., & Klingberg, T. (2014). Effect of working memory training on working memory, arithmetic and following instructions. Psychological Research, 78, 869–877. https://doi.org/10.1007/s00426-014-0614-0
Bo, W., Lei, M., Tao, S., Jie, L. T., Qian, L., Lin, F. Q., & Ping, W. X. (2019). Effects of combined intervention of physical exercise and cognitive training on cognitive function in stroke survivors with vascular cognitive impairment: a randomized controlled trial. Clinical rehabilitation, 33(1), 54–63. https://doi.org/10.1177/0269215518791007
Borella, E., Cantarella, A., Carretti, B., De Lucia, A., & De Beni, R. (2019). Improving everyday functioning in the old-old with working memory training. American Journal of Geriatric Psychiatry, 27(9), 975–983. https://doi.org/10.1016/j.jagp.2019.01.210
Bozorgian, H., Yaqubi, B., & Muhammadpour, M. (2020). Metacognitive intervention and awareness: listeners with low working memory capacity. International Journal of Listening, 36(3), 221–234. https://doi.org/10.1080/10904018.2020.1857764
Brainin, M., Matz, K., Nemec, M., Teuschl, Y., Dachenhausen, A., Asenbaum-Nan, S., Bancher, C., Kepplinger, B., Oberndorfer, S., Pinter, M., Schnider, P., Tuomilehto, J., & ASPIS Study Group (2015). Prevention of poststroke cognitive decline: ASPIS--a multicenter, randomized, observer-blind, parallel group clinical trial to evaluate multiple lifestyle interventions--study design and baseline characteristics. International journal of stroke : official journal of the International Stroke Society, 10(4), 627–635. https://doi.org/10.1111/ijs.12188
Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6, 63. https://doi.org/10.3389/fnhum.2012.00063
Buitenweg, J. I. V., Murre, J. M. J., & Ridderinkhof, K. R. (2012). Brain training in progress: a review of trainability in healthy seniors. Frontiers in Human Neuroscience, 6, 183. https://doi.org/10.3389/fnhum.2012.00183
Buitenweg, J. I. V., Murre, J. M. J., van de Ven, R. M., Prinssen, S., & Ridderinkhof, K. R. (2017). Cognitive flexibility training: A large-scale multimodal adaptive active-control intervention study in healthy older adults. Frontiers in Human Neuroscience, 11, 529. https://doi.org/10.3389/fnhum.2017.00529
Bunketorp-Käll, L., Lundgren-Nilsson, Å., Samuelsson, H., Pekny, T., Blomvé, K., Pekna, M., Pekny, M., Blomstrand, C., & Nilsson, M. (2017). Long-Term Improvements After Multimodal Rehabilitation in Late Phase After Stroke: A Randomized Controlled Trial. Stroke, 48(7), 1916–1924. https://doi.org/10.1161/STROKEAHA.116.016433
Cho, H. Y., Kim, K. T., & Jung, J. H. (2015). Effects of computer assisted cognitive rehabilitation on brain wave, memory and attention of stroke patients: a randomized control trial. Journal of physical therapy science, 27(4), 1029–1032. https://doi.org/10.1589/jpts.27.1029
Constantinidou, F. (2019). Effects of Systematic Categorization Training on Cognitive Performance in Healthy Older Adults and in Adults with Traumatic Brain Injury. Behavioural neurology, 2019, 9785319. https://doi.org/10.1155/2019/9785319
Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510–1512. https://doi.org/10.1126/science.1155466
Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720–730. https://doi.org/10.1037/a0014296
das Nair, R., Cogger, H., Worthington, E., & Lincoln, N. B. (2016). Cognitive rehabilitation for memory deficits after stroke. The Cochrane database of systematic reviews, 9(9), CD002293. https://doi.org/10.1002/14651858.CD002293.pub3
De Luca, R., Calabrò, R. S., & Bramanti, P. (2016). Cognitive rehabilitation after severe acquired brain injury: current evidence and future directions. Neuropsychological Rehabilitation, 28(6), 879–898. https://doi.org/10.1080/09602011.2016.1211937
Einstad, M. S., Thingstad, P., Lydersen, S., Gunnes, M., Saltvedt, I., & Askim, T. (2022). Physical performance and cognition as predictors of instrumental activities of daily living after stroke: A prospective multicenter cohort study. Archives of Physical Medicine and Rehabilitation, 103(7), 1320–1326. https://doi.org/10.1016/j.apmr.2022.01.153
Etherton, J. L., Oberle, C. D., Rhoton, J., & Ney, A. (2019). Effects of Cogmed working memory training on cognitive performance. Psychological Research, 83(7), 1506–1518. https://doi.org/10.1007/s00426-018-1012-9
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149
Fitri, F. I., Fithrie, A., & Rambe, A. S. (2020). Association between working memory impairment and activities of daily living in post-stroke patients. Medicinski Glasnik, 17(2), 384–389. https://doi.org/10.17392/1135-20
Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. Personality and Individual Differences, 102, 74–78. https://doi.org/10.1016/j.paid.2016.06.069
Gil-Salcedo, A., Dugravot, A., Fayosse, A., Jacob, L., Bloomberg, M., Sabia, S., & Schnitzler, A. (2022). Long-term evolution of functional limitations in stroke survivors compared with stroke-free controls: Findings from 15 years of follow-up across 3 international surveys of aging. Stroke, 53(1), 228–237. https://doi.org/10.1161/STROKEAHA.121.034534
Jaeggi, S. M., Karbach, J., & Strobach, T. (2017). Editorial special topic: Enhancing brain and cognition through cognitive training. Journal of Cognitive Enhancement, 1, 353–357. https://doi.org/10.1007/s41465-017-0057-9
Jamadar, S. D. (2020). The CRUNCH model does not account for load-dependent changes in visuospatial working memory in older adults. Neuropsychologia, 142, 107446. https://doi.org/10.1016/j.neuropsychologia.2020.107446
Jiang, C., Yang, S., Tao, J., Huang, J., Li, Y., Ye, H., Chen, S., Hong, W., & Chen, L. (2016). Clinical Efficacy of Acupuncture Treatment in Combination with RehaCom Cognitive Training for Improving Cognitive Function in Stroke: A 2 × 2 Factorial Design Randomized Controlled Trial. Journal of the American Medical Directors Association, 17(12), 1114–1122. https://doi.org/10.1016/j.jamda.2016.07.021
Joubert, C., & Chainay, H. (2018). Aging brain: the effect of combined cognitive and physical training on cognition as compared to cognitive and physical training alone; a systematic review. Clinical Interventions in Aging, Volume 13, 1267–1301. https://doi.org/10.2147/CIA.S165399
Kamal, A. K., Shaikh, Q., Pasha, O., Azam, I., Islam, M., Memon, A. A., Rehman, H., Akram, M. A., Affan, M., Nazir, S., Aziz, S., Jan, M., Andani, A., Muqeet, A., Ahmed, B., & Khoja, S. (2015). A randomized controlled behavioral intervention trial to improve medication adherence in adult stroke patients with prescription tailored Short Messaging Service (SMS)-SMS4Stroke study. BMC Neurology, 15(1), 212. https://doi.org/10.1186/s12883-015-0471-5
Karbach, J., & Schubert, T. (2013). Training-induced cognitive and neural plasticity. Frontiers in Human Neuroscience, 7, 48. https://doi.org/10.3389/fnhum.2013.00048
Karbach, J., & Verhaeghen, P. (2014). Making working memory work: A meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25(11), 2027–2037. https://doi.org/10.1177/0956797614548725
Kongkasuwan, R., Voraakhom, K., Pisolayabutra, P., Maneechai, P., Boonin, J., & Kuptniratsaikul, V. (2016). Creative art therapy to enhance rehabilitation for stroke patients: a randomized controlled trial. Clinical rehabilitation, 30(10), 1016–1023. https://doi.org/10.1177/0269215515607072
Lampit, A., Hallock, H., & Valenzuela, M. (2014). Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Medicine, 11(11), e1001756. https://doi.org/10.1371/journal.pmed.1001756
Landínez, D. A., & Montoya, D. A. (2019). Políticas de salud pública para la prevención y el tratamiento de la enfermedad vascular cerebral: Una revisión sistemática por medio de la metodología ToS (Tree of Science). Med UPB, 38(2), 129–139. https://doi.org/10.18566/medupb.v38n2.a05
Landínez Martínez, D. A., & Montoya Arenas, D. A. (2021a). Alteración en la memoria de trabajo tras enfermedad vascular cerebral: una revisión sistemática. Cuadernos Hispanoamericanos de Psicología, 21(1), 1-16. https://doi.org/10.18270/chps..v21i1.3533
Landínez Martínez, D. A., & Montoya Arenas, D. A. (2021b). Entrenamiento de la memoria de trabajo en la enfermedad vascular cerebral: revisión sistemática. Medicina UPB, 40(2), 22–32. https://doi.org/10.18566/medupb.v40n2.a04
Lawton, M. P., & Brody, E. M. (1969). Assessment of older people: self-maintaining and instrumental activities of daily living. The Gerontologist, 9(3 pt. 1), 179–186. https://psycnet.apa.org/doi/10.1093/geront/9.3_Part_1.179
Lee, K.-H. (2015). Effects of a virtual reality-based exercise program on functional recovery in stroke patients: part 1. Journal of Physical Therapy Science, 27(6), 1637-1640. https://doi.org/10.1589/jpts.27.1637
Li, K., Alonso, J., Chadha, N., & Pulido, J. (2015). Does generalization occur following computer-based cognitive retraining? - An exploratory study. Occupational Therapy in Health Care, 29(3), 283-296. https://doi.org/10.3109/07380577.2015.1010246
Lugtmeijer, S., Lammers, N. A., de Haan, E. H. F., de Leeuw, F.-E., & Kessels, R. P. C. (2021). Post-stroke working memory dysfunction: A meta-analysis and systematic review. Neuropsychology Review, 31(1), 202–219.
https://doi.org/10.1007/s11065-020-09462-4
Lundqvist, A., Grundström, K., Samuelsson, K., & Rönnberg, J. (2010). Computerized training of working memory in a group of patients suffering from acquired brain injury. Brain Injury, 24(10), 1173–1183. https://doi.org/10.3109/02699052.2010.498007
Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsychology Review, 19(4), 504–522. https://doi.org/10.1007/s11065-009-9119-9
McAvinue, L. P., Golemme, M., Castorina, M., Tatti, E., Pigni, F. M., Salomone, S., Brennan, S., & Robertson, I. H. (2013). An evaluation of a working memory training scheme in older adults. Frontiers in Aging Neuroscience, 5, 20. https://doi.org/10.3389/fnagi.2013.00020
Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. https://doi.org/10.1037/a0028228
Mograbi, D., Faria, C. A., Fichman, H., Paradela, E. P., & Lourenço, R. (2014). Relationship between activities of daily living and cognitive ability in a sample of older adults with heterogeneous educational level. Annals of Indian Academy of Neurology, 17(1), 71. https://doi.org/10.4103/0972-2327.128558
Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18(1), 46–60. https://doi.org/10.3758/s13423-010-0034-0
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
Nikravesh, M., Aghajanzadeh, M., Maroufizadeh, S., Saffarian, A., & Jafari, Z. (2021). Working memory training in post-stroke aphasia: Near and far transfer effects. Journal of Communication Disorders, 89, 106077. https://doi.org/10.1016/j.jcomdis.2020.106077
Peers, P. V., Punton, S. F., Murphy, F. C., Watson, P., Bateman, A., Duncan, J., Astle, D. E., Hampshire, A., & Manly, T. (2022). A randomized control trial of the effects of home-based online attention training and working memory training on cognition and everyday function in a community stroke sample. Neuropsychological Rehabilitation, 32(10), 2603–2627. https://doi.org/10.1080/09602011.2021.1972817
Prokopenko, S. V., Mozheyko, E. Y., Petrova, M. M., Koryagina, T. D., Kaskaeva, D. S., Chernykh, T. V., Shvetzova, I. N., & Bezdenezhnih, A. F. (2013). Correction of post-stroke cognitive impairments using computer programs. Journal of the Neurological Sciences, 325(1–2), 148–153. https://doi.org/10.1016/j.jns.2012.12.024
Regev, S., & Josman, N. (2020). Evaluation of executive functions and everyday life for people with severe mental illness: A systematic review. Schizophrenia Research: Cognition, 21, 100178. https://doi.org/10.1016/j.scog.2020.100178
Richmond, L. L., Morrison, A. B., Chein, J. M., & Olson, I. R. (2011). Working memory training and transfer in older adults. Psychology and Aging, 26(4), 813–822. https://doi.org/10.1037/a0023631
Ripp, I., Emch, M., Wu, Q., Lizarraga, A., Udale, R., von Bastian, C. C., Koch, K., & Yakushev, I. (2022). Adaptive working memory training does not produce transfer effects in cognition and neuroimaging. Translational Psychiatry, 12(1), 512. https://doi.org/10.1038/s41398-022-02272-7
Sacco, R. L., Kasner, S. E., Broderick, J. P., Caplan, L. R., Connors, J. J., Culebras, A., Mitchell, S. V., George, M. G., Hamdan, A., Higashida, R. Hoh, B., Janis, S., Kase, C. S., Kleindorfer, D. O., Lee, J.-M., Moseley, M. E., Peterson, E. D., Turan, T. N., Valderrama, A. L., & Vinters, H. V. (2013). An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 44(7), 2064-2089. https://doi.org/10.1161/STR.0b013e318296aeca
Saito, S., & Miyake, A. (2004). On the nature of forgetting and the processing–storage relationship in reading span performance. Journal of Memory and Language, 50(4), 425–443. https://doi.org/10.1016/j.jml.2003.12.003
Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in aging neuroscience, 2, 27. https://doi.org/10.3389/fnagi.2010.00027
Shatil, E. (2013). Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Frontiers in Aging Neuroscience, 5, 8. https://doi.org/10.3389/fnagi.2013.00008
Shipstead, Z., Redick, T. S., & Engle, R. W. (2010). Does working memory training generalize? Psychologica Belgica, 50(3–4), 245. https://doi.org/10.5334/pb-50-3-4-245
Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017). Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychonomic Bulletin & Review, 24(4), 1077–1096. https://doi.org/10.3758/s13423-016-1217-0
Spencer-Smith, M., & Klingberg, T. (2015). Benefits of a working memory training program for inattention in daily life: A systematic review and meta-analysis. PLoS ONE, 10(3), e0119522. https://doi.org/10.1371/journal.pone.0119522
Tam, A. C. Y., Chan, A. W. Y., Cheung, D. S. K., Ho, L. Y. W., Tang, A. S. K., Christensen, M., Tse, M. M. Y., & Kwan, R. Y. C. (2022). The effects of interventions to enhance cognitive and physical functions in older people with cognitive frailty: a systematic review and meta-analysis. European Review of Aging and Physical Activity, 19(1), 19. https://doi.org/10.1186/s11556-022-00299-9
Tsolaki, M., Poptsi, E., Aggogiatou, C., Markou, N., & Zafeiropoulos, S. (2017). Computer-based cognitive training versus paper and pencil training: Which is more effective? A randomized controlled trial in people with mild cognitive impairment. Journal of Sciences and Medicine Alzheimer’s Disease and Related Dementia 4(1), 1032.
Vallat-Azouvi, C., Pradat-Diehl, P., & Azouvi, P. (2012). The Working Memory Questionnaire: a scale to assess everyday life problems related to deficits of working memory in brain injured patients. Neuropsychological rehabilitation, 22(4), 634–649. https://doi.org/10.1080/09602011.2012.681110
van de Ven, R. M., Buitenweg, J. I. V., Schmand, B., Veltman, D. J., Aaronson, J. A., Nijboer, T. C. W., Kruiper-Doesborgh, S. J. C., van Bennekom, C. A. M., Rasquin, S. M. C., Ridderinkhof, K. R., & Murre, J. M. J. (2017). Brain training improves recovery after stroke but waiting list improves equally: A multicenter randomized controlled trial of a computer-based cognitive flexibility training. PLOS ONE, 12(3), e0172993. https://doi.org/10.1371/journal.pone.0172993
van de Ven, R. M., Murre, J. M. J., Buitenweg, J. I. V., Veltman, D. J., Aaronson, J. A., Nijboer, T. C. W., Kruiper-Doesborgh, S. J. C., van Bennekom, C. A. M., Ridderinkhof, K. R., & Schmand, B. (2017). The influence of computer-based cognitive flexibility training on subjective cognitive well-being after stroke: A multi-center randomized controlled trial. PLOS ONE, 12(11), e0187582. https://doi.org/10.1371/journal.pone.0187582
van de Ven, R. M., Murre, J. M. J., Veltman, D. J., & Schmand, B. A. (2016). Computer-based cognitive training for executive functions after stroke: A systematic review. Frontiers in Human Neuroscience, 10, 150. https://doi.org/10.3389/fnhum.2016.00150
Velugoti, L. S. D. R., Tabowei, G., Gaddipati, G. N., Mukhtar, M., Alzubaidee, M. J., Dwarampudi, R. S., Mathew, S., Bichenapally, S., Khachatryan, V., Muazzam, A., Hamal, C., & Mohammed, L. (2022). Comparison of rehabilitative interventions that ameliorate post-stroke working memory deficit: A systematic review. Cureus, 14(10), e30014. https://doi.org/10.7759/cureus.30014
Verghese, J., Mahoney, J. R., Ayers, E., Ambrose, A., Wang, C., & Holtzer, R. (2021). Computerised cognitive remediation to enhance mobility in older adults: a single-blind, single-centre, randomised trial. The Lancet Healthy Longevity, 2(9), e571–e579. https://doi.org/10.1016/S2666-7568(21)00173-2
von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: a review. Psychological Research, 78(6), 803–820. https://doi.org/10.1007/s00426-013-0524-6
Wentink, M. M., Berger, M. A. M., de Kloet, A. J., Meesters, J., Band, G. P. H., Wolterbeek, R., Goossens, P. H., & Vliet Vlieland, T. P. M. (2016). The effects of an 8-week computer-based brain training programme on cognitive functioning, QoL and self-efficacy after stroke. Neuropsychological Rehabilitation, 26(5–6), 847–865. https://doi.org/10.1080/09602011.2016.1162175
Westerberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Östensson, M. L., Bartfai, A., & Klingberg, T. (2007). Computerized working memory training after stroke – A pilot study. Brain Injury, 21(1), 21–29. https://doi.org/10.1080/02699050601148726
Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, V. O. (1982). Development and validation of a geriatric depression screening scale: a preliminary report. Journal of Psychiatric Research, 17(1), 37–49. https://doi.org/10.1016/0022-3956(82)90033-4
Yoo, C., Yong, M. H., Chung, J., & Yang, Y. (2015). Effect of computerized cognitive rehabilitation program on cognitive function and activities of living in stroke patients. Journal of physical therapy science, 27(8), 2487–2489. https://doi.org/10.1589/jpts.27.2487
Zhou, Y., Feng, H., Li, G., Xu, C., Wu, Y., & Li, H. (2022). Efficacy of computerized cognitive training on improving cognitive functions of stroke patients: A systematic review and meta‐analysis of randomized controlled trials. International Journal of Nursing Practice, 28(3), e12966. https://doi.org/10.1111/ijn.12966
DOI: https://doi.org/10.13129/2282-1619/mjcp-4352
Refbacks
- There are currently no refbacks.